SØG - mellem flere end 8 millioner bøger:
Viser: Partial Differential Equations for Scientists and Engineers
Partial Differential Equations for Scientists and Engineers Vital Source e-bog
Stanley J. Farlow
(2012)
Partial Differential Equations for Scientists and Engineers
Stanley J. Farlow
(2003)
Sprog: Engelsk
Detaljer om varen
- Vital Source searchable e-book (Reflowable pages): 414 sider
- Udgiver: Dover Publications (Marts 2012)
- ISBN: 9780486134734
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- Paperback: 414 sider
- Udgiver: Dover Publications, Incorporated (Marts 2003)
- ISBN: 9780486676203
1. Introduction to Partial Differential Equations2. Diffusion-Type Problems Lesson
2. Diffusion-Type Problems (Parabolic Equations) Lesson
3. Boundary Conditions for Diffusion-Type Problems Lesson
4. Derivation of the Heat Equation Lesson
5. Separation of Variables Lesson
6. Transforming Nonhomogeneous BCs into Homogeneous Ones Lesson
7. Solving More Complicated Problems by Separation of Variables Lesson
8. Transforming Hard Equations into Easier Ones Lesson
9. Solving Nonhomogeneous PDEs (Eigenfunction Expansions) Lesson
10. Integral Transforms (Sine and Cosine Transforms) Lesson
11. The Fourier Series and Transform Lesson
12. The Fourier Transform and its Application to PDEs Lesson
13. The Laplace Transform Lesson
14. Duhamel's Principle Lesson
15. The Convection Term u subscript x in Diffusion Problems3. Hyperbolic-Type Problems Lesson
16. The One Dimensional Wave Equation (Hyperbolic Equations) Lesson
17. The D'Alembert Solution of the Wave Equation Lesson
18. More on the D'Alembert Solution Lesson
19. Boundary Conditions Associated with the Wave Equation Lesson
20. The Finite Vibrating String (Standing Waves) Lesson
21. The Vibrating Beam (Fourth-Order PDE) Lesson
22. Dimensionless Problems Lesson
23. Classification of PDEs (Canonical Form of the Hyperbolic Equation) Lesson
24. The Wave Equation in Two and Three Dimensions (Free Space) Lesson
25. The Finite Fourier Transforms (Sine and Cosine Transforms) Lesson
26. Superposition (The Backbone of Linear Systems) Lesson
27. First-Order Equations (Method of Characteristics) Lesson
28. Nonlinear First-Order Equations (Conservation Equations) Lesson
29. Systems of PDEs Lesson
30. The Vibrating Drumhead (Wave Equation in Polar Coordinates)4. Elliptic-Type Problems Lesson
31. The Laplacian (an intuitive description) Lesson
32. General Nature of Boundary-Value Problems Lesson
33. Interior Dirichlet Problem for a Circle Lesson
34. The Dirichlet Problem in an Annulus Lesson
35. Laplace's Equation in Spherical Coordinates (Spherical Harmonics) Lesson
36. A Nonhomogeneous Dirichlet Problem (Green's Functions)5. Numerical and Approximate Methods Lesson
37. Numerical Solutions (Elliptic Problems) Lesson
38. An Explicit Finite-Difference Method Lesson
39. An Implicit Finite-Difference Method (Crank-Nicolson Method) Lesson
40. Analytic versus Numerical Solutions Lesson
41. Classification of PDEs (Parabolic and Elliptic Equations) Lesson
42. Monte Carlo Methods (An Introduction) Lesson
43. Monte Carlo Solutions of Partial Differential Equations) Lesson
44. Calculus of Variations (Euler-Lagrange Equations) Lesson
45. Variational Methods for Solving PDEs (Method of Ritz) Lesson
46. Perturbation method for Solving PDEs Lesson
47. Conformal-Mapping Solution of PDEs Answers to Selected ProblemsAppendix
1. Integral Transform TablesAppendix
2. PDE Crossword PuzzleAppendix
3. Laplacian in Different Coordinate SystemsAppendix
4. Types of Partial Differential Equations Index