SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Machine Elements - Analysis and Design

Machine Elements - Analysis and Design, 3. udgave
Søgbar e-bog

Machine Elements - Analysis and Design Vital Source e-bog

Peder Klit og Niels L. Pedersen
(2021)
Polyteknisk Forlag
373,00 kr. 335,70 kr.
Leveres umiddelbart efter køb
Machine Elements - Analysis and Design, 3. udgave

Machine Elements

Analysis and Design
Peder Klit og Niels L. Pedersen
(2021)
Sprog: Engelsk
Polyteknisk Forlag
449,00 kr. 404,10 kr.
Flere end 10 stk på lager
Hvor kan jeg afhente varen?
Bestil nu og få den leveret inden for 2-3 hverdage.

Detaljer om varen

  • 3. Udgave
  • Vital Source searchable e-book (Fixed pages)
  • Udgiver: Polyteknisk Forlag (Juli 2021)
  • Forfattere: Peder Klit og Niels L. Pedersen
  • ISBN: 9788750201045
This book is intended to provide graduate and undergraduate students with basic understanding of machine element theory, and to introduce tools and techniques facilitating design calculations for a number of frequently encountered mechanical elements.

The material in the book is appropriate for a course in Machine Elements and/or Mechanical Engineering Design for students who have passed first and second year basic courses in engineering physics, engineering mechanics and engineering materials science.

At the end of each chapter in the book, references, which may be useful for further studies of specific subjects or for verification, are given.
Licens varighed:
Bookshelf online: 5 år fra købsdato:.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 10 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • 3. Udgave
  • 302 sider
  • Udgiver: Polyteknisk Forlag (Juli 2021)
  • Forfattere: Peder Klit og Niels L. Pedersen
  • ISBN: 9788750201052
Machine Elements Analysis and Design 3rd edition   
This book is intended to provide graduate and undergraduate students with basic understanding of machine element theory, and to introduce tools and techniques facilitating design calculations for a number of frequently encountered mechanical elements. The material in the book is appropriate for a course in Machine Elements and/or Mechanical Engineering Design for students who have passed first and second year basic courses in engineering physics, engineering mechanics and engineering materials science. At the end of each chapter in the book, references, which may be useful for further studies of specific subjects or for verification, are given.  
NOTE: The exercise book for this is called Machine Elements Analysis and Design - Problems and it can be purchased separately.
Contents     Preface to the third edition Contents    1 Limits, fits and surface properties  1.1 Introduction  1.2 Geometrical tolerances 1.2.1 Specifying geometrical tolerances 1.2.2 Toleranced features 1.3 Surface texture  1.3.1 Surface Texture Parameters   1.4 Tolerances on lengths, diameters, angles  1.4.1 Dimensions and tolerances   1.4.2 Fits   1.4.3 Functional dimensioning   1.4.4 Dimension chains   1.5 The ISO-tolerance system   1.5.1 Introduction   1.5.2 Field of application   1.5.3 Terms and definitions  1.5.4 Tolerances and deviations   1.5.5 Preferred numbers   1.5.6 Standard tolerance grades IT1 to IT16   1.5.7 Formula for standard tolerances in grades IT5 to IT16   1.6 Nomenclature   1.7 References   2 Springs   2.1 Introduction  2.2 The design situation   2.3 Helical springs  2.3.1 Formulas for helical springs   2.3.2 Stress curvature correction factor  2.3.3 Material properties   2.3.4 Relaxation   2.3.5 Types of load   2.3.6 Dynamic loading   2.3.7 Compression springs   2.3.8 Extension springs   2.4 Belleville springs or coned-disc springs   2.4.1 Formulas for Belleville springs  2.5 Helical torsion springs   2.5.1 Methods of loading   2.5.2 Binding effects  2.5.3 Formulas for helical torsion springs  2.6 Spiral springs 2.6.1 Clamped outer end 2.6.2 Simply supported outer end 2.7 Supplementary literature  2.8 Nomenclature  2.9 References  3 Rolling element bearings  3.1 Introduction  3.2 Bearing types  3.2.1 Available space  3.2.2 Loads 3.2.3 Combined load  3.2.4 Misalignment  3.2.5 Speed  3.2.6 Stiffness  3.2.7 Axial displacement  3.3 Load carrying capacity and life  3.3.1 Basic load ratings  3.3.2 Life  3.3.3 Basic rating life equation  3.3.4 Requisite basic rating life  3.3.5 Adjusted rating life equation  3.3.6 Combination of life adjustment factors a2 and a3  3.3.7 SKF Life Theory  3.4 Calculation example  3.5 Calculation of dynamic bearing loads  3.5.1 Gear trains 3.5.2 Belt drives 3.5.3 Equivalent dynamic bearing load 3.5.4 Constant bearing load  3.5.5 Fluctuating bearing load  3.5.6 Requisite minimum load  3.6 Selecting static loaded bearing  3.6.1 Stationary bearing  3.6.2 Static load rating  3.6.3 Requisite basic static load rating  3.7 Radial location of bearings - Selection of fit  3.8 Bearing lubrication  3.9 Nomenclature  3.10 References  4 Shafts 4.1 Introduction  4.1.1 Terminology  4.2 Types of load  4.3 Shaft design considerations  4.3.1 Possible modes of failure  4.4 Static loading  4.5 Design for fatigue (cyclic load/dynamic load)  4.5.1 Stress concentration 4.5.2 S-N curve or Wöhler curve  4.5.3 Estimation of endurance level 4.5.4 Fluctuating load  4.6 Design for shaft deflections  4.7 Design for critical shaft speeds  4.8 Suggested design procedure, based on shaft yielding  4.9 Nomenclature 4.10 References  5 Shaft-hub Connections  5.1 Introduction  5.2 Positive connections  5.2.1 Pinned and taper-pinned joints  5.2.2 Parallel keys and Woodruff Keys  5.2.3 Splined joints  5.2.4 Prestressed shaft-hub connections  5.2.5 Failure of positive connections  5.3 Connection with force (Transmission by friction)  5.3.1 Cone interference fit  5.3.2 Interference fit with spacers 5.3.3 Interference fit (press and shrink fits)  5.4 Design modification/optimization  5.4.1 Spline design  5.5 Nomenclature  5.6 References  6 Threaded Fasteners  6.1 Introduction  6.2 Characteristics of screw motion 6.3 Types of thread  6.4 Types of bolts and nuts 6.5 Material specification for bolts and nuts 6.6 Force and torque to preload a bolt 6.7 Deflection in joints due to preload  6.8 Superposition of preload and working loads 6.9 Failure of bolted connections 6.10 Design modification/optimization  6.11 Nomenclature  6.12 References  7 Couplings and universal joints  7.1 Introduction to couplings  7.2 Functional characteristics  7.2.1 Shaft elongation or shaft division  7.2.2 Misaligned shafts or angular deviation  7.2.3 Man-operated engagement or disengagement 7.2.4 Torque-sensitive clutches  7.2.5 Speed-sensitive clutches  7.2.6 Directional (one-way) clutches, overrun clutches  7.3 Permanent torsionally stiff couplings  7.3.1 Rigid couplings  7.3.2 Universal joints and other special joints  7.4 Permanent elastic couplings 7.4.1 General purpose  7.4.2 Selection procedures  7.4.3 Damping  7.4.4 Max coupling torque for squirrel-cage motor  7.5 Overload couplings and safety couplings  7.6 Nomenclature  7.7 References 8 Clutches  8.1 Friction clutches  8.1.1 Torque transmission (static)  8.1.2 Transient slip in friction clutches during engagement  8.1.3 Dissipated energy in the clutch  8.1.4 Layout design of friction clutches  8.2 Automatic clutches  8.2.1 Speed-sensitive clutches (centrifugal clutches)  8.2.2 Directional (one-way) clutches. overrun clutches 8.3 Nomenclature  9 Brakes  9.1 Drum brakes  9.1.1 Self-energizing  9.1.2 Braking torque and friction radius  9.1.3 Wear and normal pressure for parallel guided shoe  9.1.4 Wear and normal pressure for non-pivoted long shoe 9.1.5 Wear and normal pressure for pivoted long shoe 9.2 Disc brakes 9.3 Cone brakes  9.3.1 Uniform pressure model  9.3.2 Uniform wear model  9.4 Band brakes  9.5 Nomenclature  10 Belt Drives  10.1 Introduction 10.1.1 Reasons for choosing belt drives  10.2 The belts  10.3 Belt drive geometry (kinematics)  10.4 Belt forces 10.4.1 Flat belt  10.4.2 V-belt  10.4.3 Including inertia 10.5 Belt stress (flat belt) 10.6 Optimization of belt-drives 10.7 Plot of the belt forces  10.8 Nomenclature  10.9 References  11 The geometry of involute gears 11.1 Introduction  11.2 Internal and external gears  11.3 Gear ratio  11.4 Gears in mesh  11.5 Tooth shapes  11.6 Involute tooth shape basics  11.7 Basic rack  11.8 Pitch and module 11.9 Under-cutting  11.10 Addendum modification (profile shift)  11.11 Tooth thickness  11.12 Calculating the addendum modification  11.13 Radial clearance 11.14 Gear radii  11.15 Contact ratio  11.16 Base tangent length 11.17 Helical gears  11.18 Nomenclature 11.19 References  12 The strength of involute gears 12.1 Introduction 12.2 General influence factors 12.2.1 Nominal tangential load, FNt 12.2.2 Application factor, KA 12.2.3 Dynamic factor, KV  12.3 Longitudinal (axial) load distribution factors, KHß, KFß 12.3.1 Principles of longitudinal load distributions 12.4 Transverse load distribution factors, KHa, KFa  12.4.1 Formulas for determination of factors  12.5 Calculation of surface durability (pitting)  12.5.1 Fundamental formulas  12.5.2 Allowable contact stress 12.5.3 Safety factor for contact stress (against pitting) 12.5.4 Zone factor  12.5.5 Elasticity factor 12.5.6 Contact ratio factor  12.5.7 Helix angle factor  12.5.8 Life factor  12.5.9 Lubrication factor  12.5.10 Roughness factor  12.5.11 Speed factor  12.5.12Work hardening factor 12.6 Calculation of load capacity (tooth breakage)  12.6.1 Fundamental formulas  12.6.2 Allowable tooth root stress  12.6.3 Safety factor for tooth root stress (against tooth breakage)  12.6.4 Tooth form factor  12.6.5 Helix angle factor  12.6.6 Life factor  12.6.7 Relative notch sensitivity factor, Yd  12.6.8 Relative surface condition factor  12.6.9 Size factor 12.7 Elastohydrodynamic lubrication in gears  12.8 Design modification/optimization  12.9 Nomenclature  12.10 References  13 2D Joint Kinematics  13.1 Introduction  13.2 Joints in 2D  13.3 Degrees of freedom  13.4 Position, velocity and acceleration analysis  13.5 Mechanism design 13.6 Nomenclature  13.7 References  Appendix A: Tables with ISO-tolerances and fits  Appendix B: Stress concentration factors  B.1 References  Index 
Contents

1 Limits, fits and surface properties
1.1 Introduction
1.2 Geometrical tolerances
1.2.1 Specifying geometrical tolerances
1.2.2 Toleranced features
1.3 Surface texture
1.3.1 Surface Texture Parameters
1.4 Tolerances on lengths, diameters, angles
1.4.1 Dimensions and tolerances
1.4.2 Fits
1.4.3 Functional dimensioning
1.4.4 Dimension chains
1.5 The ISO-tolerance system
1.5.1 Introduction
1.5.2 Field of application
1.5.3 Terms and definitions
1.5.4 Tolerances and deviations
1.5.5 Preferred numbers
1.5.6 Standard tolerance grades IT1 to IT16
1.5.7 Formula for standard tolerances in grades IT5 to IT16
1.6 Nomenclature
1.7 References
2 Springs
2.1 Introduction
2.2 The design situation
2.3 Helical springs
2.3.1 Formulas for helical springs
2.3.2 Stress curvature correction factor
2.3.3 Material properties
2.3.4 Relaxation
2.3.5 Types of load
2.3.6 Dynamic loading
2.3.7 Compression springs
2.3.8 Extension springs
2.4 Belleville springs or coned-disc springs
2.4.1 Formulas for Belleville springs
2.5 Helical torsion springs
2.5.1 Methods of loading
2.5.2 Binding effects
2.5.3 Formulas for helical torsion springs
2.6 Spiral springs
2.6.1 Clamped outer end
2.6.2 Simply supported outer end
2.7 Supplementary literature
2.8 Nomenclature
2.9 References
3 Rolling element bearings
3.1 Introduction
3.2 Bearing types
3.2.1 Available space
3.2.2 Loads
3.2.3 Combined load
3.2.4 Misalignment
3.2.5 Speed
3.2.6 Stiffness
3.2.7 Axial displacement
3.3 Load carrying capacity and life
3.3.1 Basic load ratings
3.3.2 Life
3.3.3 Basic rating life equation
3.3.4 Requisite basic rating life
3.3.5 Adjusted rating life equation
3.3.6 Combination of life adjustment factors a2 and a3
3.3.7 SKF Life Theory
3.4 Calculation example
3.5 Calculation of dynamic bearing loads
3.5.1 Gear trains
3.5.2 Belt drives
3.5.3 Equivalent dynamic bearing load
3.5.4 Constant bearing load
3.5.5 Fluctuating bearing load
3.5.6 Requisite minimum load
3.6 Selecting static loaded bearing
3.6.1 Stationary bearing
3.6.2 Static load rating
3.6.3 Requisite basic static load rating
3.7 Radial location of bearings - Selection of fit
3.8 Bearing lubrication
3.9 Nomenclature
3.10 References
4 Shafts
4.1 Introduction
4.1.1 Terminology
4.2 Types of load
4.3 Shaft design considerations
4.3.1 Possible modes of failure
4.4 Static loading
4.5 Design for fatigue (cyclic load/dynamic load)
4.5.1 Stress concentration
4.5.2 S-N curve or Wöhler curve
4.5.3 Estimation of endurance level
4.5.4 Fluctuating load
4.6 Design for shaft deflections
4.7 Design for critical shaft speeds
4.8 Suggested design procedure, based on shaft yielding
4.9 Nomenclature
4.10 References
5 Shaft-hub Connections
5.1 Introduction
5.2 Positive connections
5.2.1 Pinned and taper-pinned joints
5.2.2 Parallel keys and Woodruff Keys
5.2.3 Splined joints
5.2.4 Prestressed shaft-hub connections
5.2.5 Failure of positive connections
5.3 Connection with force
(Transmission by friction)
5.3.1 Cone interference fit
5.3.2 Interference fit with spacers
5.3.3 Interference fit (press and shrink fits)
5.4 Design modification/optimization
5.4.1 Spline design
5.5 Nomenclature
5.6 References
6 Threaded Fasteners
6.1 Introduction
6.2 Characteristics of screw motion
6.3 Types of thread
6.4 Types of bolts and nuts
6.5 Material specification for bolts and nuts
6.6 Force and torque to preload a bolt
6.7 Deflection in joints due to preload
6.8 Superposition of preload and working loads
6.9 Failure of bolted connections
6.10 Design modification/optimization
6.11 Nomenclature
6.12 References
7 Couplings and universal joints
7.1 Introduction to couplings
7.2 Functional characteristics
7.2.1 Shaft elongation or shaft division
7.2.2 Misaligned shafts or angular deviation
7.2.3 Man-operated engagement or disengagement
7.2.4 Torque-sensitive clutches
7.2.5 Speed-sensitive clutches
7.2.6 Directional (one-way) clutches, overrun clutches
7.3 Permanent torsionally stiff couplings
7.3.1 Rigid couplings
7.3.2 Universal joints and other special joints
7.4 Permanent elastic couplings
7.4.1 General purpose
7.4.2 Selection procedures
7.4.3 Damping
7.4.4 Max coupling torque for squirrel-cage motor
7.5 Overload couplings and safety couplings
7.6 Nomenclature
7.7 References
8 Clutches
8.1 Friction clutches
8.1.1 Torque transmission (static)
8.1.2 Transient slip in friction clutches during engagement
8.1.3 Dissipated energy in the clutch
8.1.4 Layout design of friction clutches
8.2 Automatic clutches
8.2.1 Speed-sensitive clutches (centrifugal clutches)
8.2.2 Directional (one-way) clutches. overrun clutches
8.3 Nomenclature
9 Brakes
9.1 Drum brakes
9.1.1 Self-energizing
9.1.2 Braking torque and friction radius
9.1.3 Wear and normal pressure for parallel guided shoe
9.1.4 Wear and normal pressure for non-pivoted long shoe
9.1.5 Wear and normal pressure for pivoted long shoe
9.2 Disc brakes
9.3 Cone brakes
9.3.1 Uniform pressure model
9.3.2 Uniform wear model
9.4 Band brakes
9.5 Nomenclature
10 Belt Drives
10.1 Introduction
10.1.1 Reasons for choosing belt drives
10.2 The belts
10.3 Belt drive geometry (kinematics)
10.4 Belt forces
10.4.1 Flat belt
10.4.2 V-belt
10.4.3 Including inertia
10.5 Belt stress (flat belt)
10.6 Optimization of belt-drives
10.7 Plot of the belt forces
10.8 Nomenclature
10.9 References
11 The geometry of involute gears
11.1 Introduction
11.2 Internal and external gears
11.3 Gear ratio
11.4 Gears in mesh
11.5 Tooth shapes
11.6 Involute tooth shape basics
11.7 Basic rack
11.8 Pitch and module
11.9 Under-cutting
11.10 Addendum modification (profile shift)
11.11 Tooth thickness
11.12 Calculating the addendum modification
11.13 Radial clearance
11.14 Gear radii
11.15 Contact ratio
11.16 Base tangent length
11.17 Helical gears
11.18 Nomenclature
11.19 References
12 The strength of involute gears
12.1 Introduction
12.2 General influence factors
12.2.1 Nominal tangential load, FNt
12.2.2 Application factor, KA
12.2.3 Dynamic factor, KV
12.3 Longitudinal (axial) load distribution factors, KHß, KFß
12.3.1 Principles of longitudinal load distributions
12.4 Transverse load distribution factors, KHa, KFa
12.4.1 Formulas for determination of factors
12.5 Calculation of surface durability (pitting)
12.5.1 Fundamental formulas
12.5.2 Allowable contact stress
12.5.3 Safety factor for contact stress (against pitting)
12.5.4 Zone factor
12.5.5 Elasticity factor
12.5.6 Contact ratio factor
12.5.7 Helix angle factor
12.5.8 Life factor
12.5.9 Lubrication factor
12.5.10 Roughness factor
12.5.11 Speed factor
12.5.12Work hardening factor
12.6 Calculation of load capacity (tooth breakage)
12.6.1 Fundamental formulas
12.6.2 Allowable tooth root stress
12.6.3 Safety factor for tooth root stress (against tooth breakage)
12.6.4 Tooth form factor
12.6.5 Helix angle factor
12.6.6 Life factor
12.6.7 Relative notch sensitivity factor, Yd
12.6.8 Relative surface condition factor
12.6.9 Size factor
12.7 Elastohydrodynamic lubrication in gears
12.8 Design modification/optimization
12.9 Nomenclature
12.10 References
13 2D Joint Kinematics
13.1 Introduction
13.2 Joints in 2D
13.3 Degrees of freedom
13.4 Position, velocity and acceleration analysis
13.5 Mechanism design
13.6 Nomenclature
13.7 References
Appendix A: Tables with ISO-tolerances and fits
Appendix B: Stress concentration factors
B.1 References
Index
De oplyste priser er inkl. moms

Andre har også købt:

Machine Elements - Analysis and Design Problems, 2. udgave
Machine Elements
Af Niels L. Pederse...
Pris: 159,00 .kr
Rabatpris: 143,10 kr.
Callister's Materials Science and Engineering, 10. udgave
Callister's Materials...
Af William D. Calli...
Pris: 595,00 .kr
Rabatpris: 535,50 kr.
Plasticity and creep in structural materials
Plasticity and creep ...
Pris: 99,00 kr.
Advanced Surface Technology,  Volume 1+2 - A holistic view on the extensive and intertwined world of applied surface engineering
Advanced Surface Tech...
Af Per Møller og La...
Pris: 1.250,00 kr.
Systematic design of industrial products
Systematic design of ...
Pris: 175,00 .kr
Rabatpris: 157,50 kr.

Senest sete

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.