SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Differential Geometry - Connections, Curvature, and Characteristic Classes

Differential Geometry

Differential Geometry Vital Source e-bog

Loring W. Tu
(2017)
Springer Nature
468,00 kr.
Leveres umiddelbart efter køb
Differential Geometry - Connections, Curvature, and Characteristic Classes

Differential Geometry

Connections, Curvature, and Characteristic Classes
Loring W. Tu
(2017)
Sprog: Engelsk
Springer London, Limited
719,00 kr. 359,00 kr.
På lager, Bestil nu og få den leveret
om ca. 2 hverdage
  • Klik for at bedømme:
  • 0.0/6 (0 bedømmelser)

Detaljer Om Varen

  • Vital Source E-book
  • Udgiver: Springer Nature (Juni 2017)
  • ISBN: 9783319550848
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of  de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields.  The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Licens varighed:
Online udgaven er tilgængelig: 365 dage fra købsdato.
Offline udgaven er tilgængelig: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 2 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer Om Varen

  • Hardback
  • Udgiver: Springer London, Limited (Juni 2017)
  • ISBN: 9783319550824
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss-Bonnet theorem. Exercises throughout the book test the reader's understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of  de Rham cohomology is required for the last third of the text.

Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included.

Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields.  The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Preface
-
Chapter 1. Curvature and Vector Fields. -
1. Riemannian Manifolds. -
2. Curves. -
3. Surfaces in Space. -
4. Directional Derivative in Euclidean Space. -
5. The Shape Operator. -
6. Affine Connections. -
7. Vector Bundles. -
8. Gauss's Theorema Egregium. -
9. Generalizations to Hypersurfaces in Rn+1. -
Chapter 2. Curvature and Differential Forms. -
10. Connections on a Vector Bundle. -
11. Connection, Curvature, and Torsion Forms. -
12. The Theorema Egregium Using Forms. -
Chapter 3. Geodesics. -
13. More on Affine Connections. -
14. Geodesics. -
15. Exponential Maps. -
16. Distance and Volume. -
17. The Gauss-Bonnet Theorem. -
Chapter 4. Tools from Algebra and Topology. -
18. The Tensor Product and the Dual Module. -
19. The Exterior Power. -
20. Operations on Vector Bundles. -
21. Vector-Valued Forms. -
Chapter 5. Vector Bundles and Characteristic Classes. -
22. Connections and Curvature Again. -
23. Characteristic Classes. -
24. Pontrjagin Classes. -
25. The Euler Class and Chern Classes. -
26. Some Applications of Characteristic Classes. -
Chapter 6. Principal Bundles and Characteristic Classes. -
27. Principal Bundles. -
28. Connections on a Principal Bundle. -
29. Horizontal Distributions on a Frame Bundle. -
30. Curvature on a Principal Bundle. -
31. Covariant Derivative on a Principal Bundle. -
32. Character Classes of Principal Bundles. - A. Manifolds. - B. Invariant Polynomials. - Hints and Solutions to Selected End-of-Section Problems. - List of Notations. - References. -
Index.
De oplyste priser er inkl. moms
Trustpilot = Fremragende

senest sete

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her

Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Ebog: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 365 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.