SØG - mellem flere end 8 millioner bøger:
Viser: Bayesian Data Analysis
Bayesian Data Analysis Vital Source e-bog
Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari og Donald B. Rubin
(2013)
Bayesian Data Analysis
Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, David B. Dunson og Aki Vehtari
(2013)
Sprog: Engelsk
Detaljer om varen
- 3. Udgave
- Vital Source searchable e-book (Reflowable pages)
- Udgiver: Taylor & Francis (November 2013)
- Forfattere: Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari og Donald B. Rubin
- ISBN: 9781040062340
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 2 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- Hardback: 675 sider
- Udgiver: Taylor & Francis Group (November 2013)
- Forfattere: Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, David B. Dunson og Aki Vehtari
- ISBN: 9781439840955
Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors--all leaders in the statistics community--introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice.
New to the Third Edition
- Four new chapters on nonparametric modeling
- Coverage of weakly informative priors and boundary-avoiding priors
- Updated discussion of cross-validation and predictive information criteria
- Improved convergence monitoring and effective sample size calculations for iterative simulation
- Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation
- New and revised software code
The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book's web page.
chapter.