SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: 3D Bioprinting from Lab to Industry

3D Bioprinting from Lab to Industry, 1. udgave
Søgbar e-bog

3D Bioprinting from Lab to Industry Vital Source e-bog

Prosenjit Saha
(2024)
John Wiley & Sons
2.099,00 kr.
Leveres umiddelbart efter køb
3D Bioprinting from Lab to Industry

3D Bioprinting from Lab to Industry

Prosenjit Saha, Sabu Thomas, Jinku Kim og Manojit Ghosh
(2024)
Sprog: Engelsk
John Wiley & Sons, Limited
2.298,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (Juli 2024)
  • ISBN: 9781119894391
A complete overview of bioprinting, from fundamentals and essential topics to recent advances and future applications Additive manufacturing, also known as 3D printing, is one of the most transformative technological processes to emerge in recent decades. Its layer-by-layer construction method can create objects to remarkably precise specifications with minimal waste or energy consumption. Bioprinting, a related process that employs cells and biomaterials instead of man-made substances or industrial materials, has a range of biomedical and chemical uses that make it an exciting and fast-growing area of research. 3D Bioprinting from Lab to Industry offers a cutting-edge overview of this topic, its recent advances, and its future applications. Taking an interdisciplinary approach to a flourishing research field, this book exceeds all existing treatments of the subject in its scope and comprehensiveness. Moving from fundamental principles of the technology to its immense future potential, this is a must-own volume for scientists looking to incorporate this process into their research or product development. 3D Bioprinting from Lab to Industry readers will also find: Treatment of printing parameters, surface topography requirements, and much more Detailed discussion of topics including 5D printing in the medical field, dynamic tuning, the multi-material extrusion approach, and many others A complete account of the bioprinting process, from lab requirements to commercialization 3D Bioprinting from Lab to Industry is ideal for researchers—graduate and post-doctoral scholars—in the areas of materials science, biomedical engineering, chemical engineering, biotechnology, and biochemistry.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 528 sider
  • Udgiver: John Wiley & Sons, Limited (Juni 2024)
  • Forfattere: Prosenjit Saha, Sabu Thomas, Jinku Kim og Manojit Ghosh
  • ISBN: 9781119894377

This book provides a complete overview of the fundamentals of bioprinting and also covers recent advancements and future applications. Most treatment on the topic of bioprinting only focuses on a particular area, such as printing methodologies or printable inks, within the topic. However, bioprinting is very broad and interdisciplinary area that integrate many rapidly growing technologies such as data science, machine learning, and materials informatics to support industry 4.0.

The first section of the book provides essential background information in the field. of the established field such as cellular requirements and preparation for bioprinting, materials, printability and shape fidelity, and toxicity aspects and ethical issues of bioprinting. The second section moves on to relevant innovations associated with the field including controlling factors of bioprinting (patterning and surface topography), in situ bioprinting, impact of machine learning. The book even touches on advanced bioprinting for future advances like organ on chip system, Five-dimensional (5D) printing in the medical field, dynamic tuning of ink rheological properties, benefits of multi-material extrusion approach, space bioprinting-gravity-free effect, and more.

List of Contributors xv Foreword xxi Ajoy Kumar Ray 1 Introduction of 3D Printing and Different Bioprinting Methods 1 Asmita Biswas, Baisakhee Saha, Hema Bora, Pravin Vasudeo Vaidya, Krishna Dixit, and Santanu Dhara
1.1 Introduction of 3D Printing: Principles and Utility 1
1.2 Ink Preparation and Printability 2
1.3 Methods of Bioprinting in Fabrication and Tissue Engineering 5
1.4 Scaffold Modeling and G Coding 16
1.5 Applications and Utility in Large- Scale Manufacturing 18
1.6 Complications and Troubleshooting 25 References 27 2 Cellular Requirements and Preparation for Bioprinting 39 Shalini Dasgupta, Vriti Sharma, and Ananya Barui
2.1 Introduction 39
2.2 Types of Bioprinting 40
2.3 Features Required for Bioprinting with Cells 44
2.4 Bioprinting Methodologies for Cell Expansion and Proliferation 55
2.5 The Impact of Bioprinting Process Conditions on Phenotype Alterations 57
2.6 Discussion 68
2.7 Conclusion 69
2.8 Future Prospects 69 References 70 3 3D Bioprinting: Materials for Bioprinting Bioinks Selection 85 Mona Moaness and Mostafa Mabrouk
3.1 Introduction 85
3.2 Bioprinting Materials 87
3.3 Bioinks Selectivity Guide 90
3.4 Classification of Bioprinting Materials 94
3.5 3D Bioprinting Methods According to the Type of the Bioinks 100
3.6 Bioinks Selection According to Biomedical Application 102
3.7 Multicomponent Bioinks 106
3.8 Future Prospects 107 References 107 4 Printed Scaffolds in Tissue Engineering 119 Thara Tom, Samanta Sam, Josmin P. Jose, M.S. Sreekala, and Sabu Thomas
4.1 Introduction 119
4.2 Biomedical Application of 3D Printing 120
4.3 Tissue Engineering: Emerging Applications by 3D Printing 128
4.4 Conclusions 136 References 136 5 Printability and Shape Fidelity in Different Bioprinting Process 143 Prajisha Prabhakar, Aiswarya Sathian, and Sabu Thomas
5.1 Introduction 143
5.2 Fundamentals of Printability 144
5.3 Bioprinting Techniques and Printability 146
5.4 Shape Fidelity 152
5.5 Case Studies and Applications 161
5.6 Conclusion 163 References 163 6 Advancements in Bioprinting for Medical Applications 169 Kevin Y. Wu, Maxine Joly- Chevrier, Laura K. Gorwill, Michael Marchand, and Simon D. Tran
6.1 Introduction 169
6.2 Bioprinting for Drug Development and Testing 170
6.3 Bioprinting in Tissue Engineering, Regenerative Medicine, and Organ Transplantation 183
6.4 Bioprinting in Tissue: Challenges, Barriers to Clinical Translation, and Future Directions 215
6.5 Conclusions 218 Acknowledgments 218 References 219 7 4D-Printed, Smart, Multiresponsive Structures and Their Applications 231 Jinku Kim, D.A. Gouripriya, and Prosenjit Saha
7.1 Introduction 231
7.2 4D- Printing Technologies 232
7.3 Biomaterials for 4D Bioprinting 234
7.4 Biomedical Applications for 4D Bioprinting 239
7.5 Future Perspectives 244 References 246 8 Toxicity Aspects and Ethical Issues of Bioprinting 251 Noura Al Hashimi and Sanjairaj Vijayavenkataraman
8.1 Introduction 251
8.2 Toxicity Issues in Bioprinting 253
8.3 Ethical Issues in Bioprinting 255
8.4 Issues in Clinical Trials 259
8.5 Legal Issues in Bioprinting 262
8.6 Conclusion 265 References 266 9 Planning Bioprinting Project 273 Anish Deb, Prosenjit Saha, and Debashis Sarkar
9.1 Introduction 273
9.2 Background: Image Capturing and Solid Model Preparation of Virtual Anatomical Model for 3D Printing 275
9.3 Conclusion 296 References 297 10 Computational Engineering for 3D Bioprinting: Models, Methods, and Emerging Technologies 301 Vidyapati Kumar, Ankita Mistri, Varnit Jain, and Manojit Ghosh
10.1 Introduction 301
10.2 Fundamentals of Numerical Methods in Bioprinting 306
10.3 Application of Machine Learning for 3D Bioprinting 312
10.4 Summary 315 References 317 11 Controlling Factors of Bioprinting 323 Mridula Sreedharan, D.A. Gouripriya, Ankita Deb, Yves Grohens, Nandakumar Kalarikkal, Prosenjit Saha, and Sabu Thomas
11.1 Introduction 323
11.2 Factors Influencing the Printability of Hydrogel Bioink 324
11.3 Bioink Formulation 327
11.4 Influence of Printing Process on Cell Behavior 328
11.5 Importance of Patterning and Surface Topography 330
11.6 Contact Guidance and Directional Growth of Cells 337
11.7 Cell Viability and Mitigation Process 339
11.8 Possible Mitigation Techniques 342
11.9 Conclusion 342 References 343 12 In Situ Bioprinting 347 Mina Mina, Kevin Y. Wu, Ananda Kalevar, and Simon D. Tran
12.1 Introduction 347
12.2 Advantages of In Situ Bioprinting 348
12.3 In Situ Bioprinting Technologies 351
12.4 Bioinks and Biomaterials for In Situ Bioprinting 362
12.5 In Situ Approaches for Tissue Regeneration 364
12.6 Future Directions 379
12.7 Conclusion 381 Acknowledgments 382 References 382 13 Importance of Machine Learning in 3D Bioprinting 391 Shohreh Vanaei, Saeedeh Vanaei, Michèle Kanhonou, Sofiane Khelladi, Abbas Tcharkhtchi, and Hamid Reza Vanaei
13.1 Introduction 391
13.2 3D Bioprinting 392
13.3 Machine Learning in 3D Bioprinting 399
13.4 Challenges in 3D Bioprinting Process Using ML 404
13.5 Future Outlook 405
13.6 Summary and Conclusion 406 References 407 14 Advanced Bioprinting for the Future 411 D.A. Gouripriya, Soumyadeep Bera, Jaideep Adhikari, Poonam Debnath, Prosenjit Saha, and Sabu Thomas
14.1 Introduction 411
14.2 Electrospinning and Bioprinting 412
14.3 4D Printing 413
14.4 5D and 6D Printing 418
14.5 Organ Printing 421
14.6 Vascularized Organ on a Chip 424
14.7 Multimaterial Bioprinting 426
14.8 Printing in Microgravity 429
14.9 In Vivo Bioprinting 430
14.10 Biohybrid Robots 432
14.11 Conclusion and Future Perspectives 434 References 435 15 Nanomaterials for Designing Functional Properties of Bioinks 441 Laila Hussein, Mostafa Mabrouk, Mohamed G. Farahat, and Hanan H. Beherei
15.1 3D- Bioprinting 441
15.2 Designing Functional Bioinks Using Nanoscale Biomaterials 443
15.3 Synthesis and Tailoring the Properties of Nanobioinks 456
15.4 Nanobioinks and Tissue Engineering 460
15.5 Future Outlook 462 References 463 16 3D Bioprinting from Lab to Industry 475 Saeedeh Vanaei, Shohreh Vanaei, Michèle Kanhonou, Abbas Tcharkhtchi, and Hamid Reza Vanaei
16.1 Introduction 475
16.2 3D Bioprinting and Its Historical Point of View 477
16.3 Potential of 3D Bioprinting from Lab to Industry 478
16.4 The Diversity of 3D Bioprinting 479
16.5 3D Bioprinting and Human Hearts 486
16.6 3D Bioprinting and Microfluidic Organ- on- a-Chip Models 488
16.7 Future Developments 490 References 490 Index 493
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.