SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Data Structures and Algorithms in Python

Data Structures and Algorithms in Python, 1. udgave
Søgbar e-bog

Data Structures and Algorithms in Python Vital Source e-bog

Michael T. Goodrich
(2012)
John Wiley & Sons
477,00 kr.
Leveres umiddelbart efter køb
Data Structures and Algorithms in Python, 1. udgave
Søgbar e-bog

Data Structures and Algorithms in Python Vital Source e-bog

Michael T. Goodrich, Roberto Tamassia og Michael H. Goldwasser
(2013)
John Wiley & Sons
519,00 kr.
Leveres umiddelbart efter køb
Data Structures and Algorithms in Python, 1. udgave

Data Structures and Algorithms in Python

Michael T. Goodrich, Roberto Tamassia og Michael H. Goldwasser
(2013)
Sprog: Engelsk
John Wiley & Sons, Incorporated
849,00 kr.
Bestil nu og få den leveret inden for 2-3 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Fixed pages)
  • Udgiver: John Wiley & Sons (November 2012)
  • ISBN: 9781118549582
Based on the authors’ market leading data structures books in Java and C++, this textbook offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for the Python data structures course. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Fixed pages)
  • Udgiver: John Wiley & Sons (Juni 2013)
  • Forfattere: Michael T. Goodrich, Roberto Tamassia og Michael H. Goldwasser
  • ISBN: 9781118476734


Based on the authors’ market leading data structures books in Java and C++, this textbook offers a comprehensive, definitive introduction to data structures in Python by respected authors. Data Structures and Algorithms in Python is the first mainstream object-oriented book available for the Python data structures course. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • 1. Udgave
  • Hardback: 768 sider
  • Udgiver: John Wiley & Sons, Incorporated (Marts 2013)
  • Forfattere: Michael T. Goodrich, Roberto Tamassia og Michael H. Goldwasser
  • ISBN: 9781118290279

Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.

  • Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts.
  • Employs a consistent object-oriented viewpoint throughout the text.
  • Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects.
  • Provides a thorough discussion on the analysis and design of fundamental data structures.
  • Includes many helpful Python code examples, with source code provided on the website.
  • Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner.
  • Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts.
  • Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.
Preface v 1 Python Primer 1
1.1 Python Overview 2
1.2 Objects in Python 4
1.3 Expressions, Operators, and Precedence 12
1.4 Control Flow 18
1.5 Functions 23
1.6 Simple Input and Output 30
1.7 Exception Handling 33
1.8 Iterators and Generators 39
1.9 Additional Python Conveniences 42
1.10 Scopes and Namespaces 46
1.11 Modules and the Import Statement 48
1.12 Exercises 51 2 Object-Oriented Programming 56
2.1 Goals, Principles, and Patterns 57
2.2 Software Development 62
2.3 Class Definitions 69
2.4 Inheritance 82
2.5 Namespaces and Object-Orientation 96
2.6 Shallow and Deep Copying101
2.7 Exercises 103 3 Algorithm Analysis 109
3.1 Experimental Studies 111
3.1.1 Moving Beyond Experimental Analysis 113
3.2 The Seven Functions Used in This Book 115
3.3 Asymptotic Analysis 123
3.4 Simple Justification Techniques 137
3.5 Exercises 141 4 Recursion 148
4.1 Illustrative Examples 150
4.2 Analyzing Recursive Algorithms 161
4.3 Recursion Run Amok 165
4.4 Further Examples of Recursion 169
4.5 Designing Recursive Algorithms 177
4.6 Eliminating Tail Recursion 178
4.7 Exercises 180 5 Array-Based Sequences 183
5.1 Python''s Sequence Types 184
5.2 Low-Level Arrays 185
5.3 Dynamic Arrays and Amortization 192
5.4 Efficiency of Python''s Sequence Types 202
5.5 Using Array-Based Sequences 210
5.6 Multidimensional Data Sets 219
5.7 Exercises 224 6 Stacks, Queues, and Deques 228
6.1 Stacks 229
6.2 Queues 239
6.3 Double-Ended Queues 247
6.4 Exercises 250 7 Linked Lists 255
7.1 Singly Linked Lists 256
7.2 Circularly Linked Lists 266
7.3 Doubly Linked Lists 270
7.4 The Positional List ADT 277
7.5 Sorting a Positional List 285
7.6 Case Study: Maintaining Access Frequencies 286
7.7 Link-Based vs Array-Based Sequences 292
7.8 Exercises 294 8 Trees 299
8.1 General Trees 300
8.2 Binary Trees 311
8.3 Implementing Trees 317
8.4 Tree Traversal Algorithms 328
8.5 Case Study: An Expression Tree 348
8.6 Exercises 352 9 Priority Queues 362
9.1 The Priority Queue Abstract Data Type 363
9.2 Implementing a Priority Queue 365
9.3 Heaps 370
9.4 Sorting with a Priority Queue 385
9.5 Adaptable Priority Queues 390
9.6 Exercises 395 10 Maps, Hash Tables, and Skip Lists 401
10.1 Maps and Dictionaries 402
10.2 Hash Tables 410
10.3 Sorted Maps 427
10.4 Skip Lists 437
10.5 Sets, Multisets, and Multimaps 446
10.6 Exercises 452 11 Search Trees 459
11.1 Binary Search Trees 460
11.2 Balanced Search Trees 475
11.2.1 Python Framework for Balancing Search Trees 478
11.3 AVL Trees 481
11.4 Splay Trees 490
11.5 (2,4) Trees 502
11.6 Red-Black Trees 512
11.7 Exercises 528 12 Sorting and Selection 536
12.1 Why Study Sorting Algorithms? 537
12.2 Merge-Sort 538
12.3 Quick-Sort 550
12.4 Studying Sorting through an Algorithmic Lens 562
12.5 Comparing Sorting Algorithms567
12.6 Python''s Built-In Sorting Functions 569
12.7 Selection 571
12.8 Exercises 574 13 Text Processing 581
13.1 Abundance of Digitized Text 582
13.2 Pattern-Matching Algorithms 584
13.3 Dynamic Programming 594
13.4 Text Compression and the Greedy Method 601
13.5 Tries 604
13.6 Exercises 613 14 Graph Algorithms 619
14.1 Graphs 620
14.2 Data Structures for Graphs627
14.3 Graph Traversals 638
14.4 Transitive Closure 651
14.5 Directed Acyclic Graphs 655
14.6 Shortest Paths 659
14.7 Minimum Spanning Trees 670
14.8 Exercises 686 15 Memory Management and B-Trees 697
15.1 Memory Management 698
15.2 Memory Hierarchies and Caching 705
15.3 External Searching and B-Trees 711
15.4 External-Memory Sorting 715
15.5 Exercises 717 A Character Strings in Python 721 B Useful Mathematical Facts 725 Bibliography 732 Index 737
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Fysisk eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.