SØG - mellem flere end 8 millioner bøger:
Viser: Advanced Engineering Electromagnetics
Advanced Engineering Electromagnetics Vital Source e-bog
Constantine A. Balanis
(2012)
Advanced Engineering Electromagnetics
Constantine A. Balanis
(2012)
Sprog: Engelsk
Detaljer om varen
- 2. Udgave
- Vital Source searchable e-book (Fixed pages)
- Udgiver: John Wiley & Sons (Januar 2012)
- ISBN: 9781118214763
In addition, the Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include:
-Lecture notes in Power Point format for all the chapters (nearly 4,225 of them) for ready-made lectures.
-MATLAB® programs (46 of them) for computations and animations of some of the EM principles and wave phenomena
-Updated Solutions Manual
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- 2. Udgave
- Hardback: 1040 sider
- Udgiver: John Wiley & Sons, Incorporated (Januar 2012)
- ISBN: 9780470589489
"Balanis' new edition of Advanced Engineering and Electromagnetics features new content on the basics of Metamaterials including figures to demonstrate their properties.
Several small sections have been added on Mie series scattering by a PEC sphere; wedge diffraction by a wedge with surface impedances; and curve surface diffraction.
Throughout the book, there are more helpful examples, end-of-chapter problems, and references as well as lecture notes in PowerPoint format.
The revised edition also features MATLAB programs to animate some of the wave phenomena such as: propagation, reflection and refraction by planar interfaces; scattering by PEC circular cylinder, dielectric circular cylinder, dielectric coated PEC circular cylinder, and PEC sphere; and wedge defraction by 2-D PEC wedge"--
1.1 Introduction 1
1.2 Maxwell''s Equations 1
1.3 Constitutive Parameters and Relations 5
1.4 Circuit-Field Relations 7
1.5 Boundary Conditions 12
1.6 Power and Energy 18
1.7 Time-Harmonic Electromagnetic Fields 21
1.8 Multimedia 29 2 Electrical Properties of Matter 39
2.1 Introduction 39
2.2 Dielectrics, Polarization, and Permittivity 41
2.3 Magnetics, Magnetization, and Permeability 48
2.4 Current, Conductors, and Conductivity 55
2.5 Semiconductors 59
2.6 Superconductors 64
2.7 Matamaterials 66
2.8 Linear, Homogeneous, Isotropic, and Nondispersive Media 67
2.9 A.C. Variations in Materials 68
2.10 Multimedia 89 3 Wave Equation and its Solutions 99
3.1 Introduction 99
3.2 Time-Varying Electromagnetic Fields 99
3.3 Time-Harmonic Electromagnetic Fields 101
3.4 Solution to the Wave Equation 102 4 Wave Propagation and Polarization 123
4.1 Introduction 123
4.2 Transverse Electromagnetic Modes 123
4.3 Transverse Electromagnetic Modes in Lossy Media 138
4.4 Polarization 146
4.5 Multimedia 166 5 Reflection and Transmission 173
5.1 Introduction 173
5.2 Normal Incidence--Lossless Media 173
5.3 Oblique Incidence--Lossless Media 177
5.4 Lossy Media 198
5.5 Reflection and Transmission of Multiple Interfaces 205
5.6 Polarization Characteristics on Reflection 220
5.7 Metamaterials 227
5.8 Multimedia 245 6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 259
6.1 Introduction 259
6.2 The Vector Potential A 260
6.3 The Vector Potential F 262
6.4 The Vector Potentials A and F 263
6.5 Construction of Solutions 265
6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 279
6.7 Far-Field Radiation 283
6.8 Radiation and Scattering Equations 284
6.9 Multimedia 305 7 Electromagnetic Theorems and Principles 311
7.1 Introduction 311
7.2 Duality Theorem 311
7.3 Uniqueness Theorem 313
7.4 Image Theory 315
7.5 Reciprocity Theorem 323
7.6 Reaction Theorem 325
7.7 Volume Equivalence Theorem 326
7.8 Surface Equivalence Theorem: Huygens''S Principle 328
7.9 Induction Theorem (Induction Equivalent) 333
7.10 Physical Equivalent and Physical Optics Equivalent 337
7.11 Induction and Physical Equivalent Approximations 339
7.12 Multimedia 344 8 Rectangular Cross-Section Waveguides and Cavities 351
8.1 Introduction 351
8.2 Rectangular Waveguide 352
8.3 Rectangular Resonant Cavities 382
8.4 Hybrid (LSE and LSM) Modes 390
8.5 Partially Filled Waveguide 393
8.6 Transverse Resonance Method 405
8.7 Dielectric Waveguide 408
8.8 Artificial Impedance Surfaces 436
8.9 Stripline and Microstrip Lines 455
8.10 Ridged Waveguide 466
8.11 Multimedia 470 9 Circular Cross-Section Waveguides and Cavities 483
9.1 Introduction 483
9.2 Circular Waveguide 483
9.3 Circular Cavity 500
9.4 Radial Waveguides 509
9.5 Dielectric Waveguides and Resonators 516
9.6 Multimedia 541 10 Spherical Transmission Lines and Cavities 549
10.1 Introduction 549
10.2 Construction of Solutions 549
10.3 Biconical Transmission Line 557
10.4 The Spherical Cavity 561
10.5 Multimedia 569 11 Scattering 575
11.1 Introduction 575
11.2 Infinite Line-Source Cylindrical Wave Radiation 575
11.3 Plane Wave Scattering by Planar Surfaces 583
11.4 Cylindrical Wave Transformations and Theorems 599
11.5 Scattering by Circular Cylinders 607
11.6 Scattering By a Conducting Wedge 640
11.7 Spherical Wave Orthogonalities, Transformations, and Theorems 650
11.8 Scattering by a Sphere 655
11.9 Multimedia 665 12 Integral Equations and the Moment Method 679
12.1 Introduction 679
12.2 Integral Equation Method 679
12.3 Electric and Magnetic Field Integral Equations 703
12.4 Finite Diameter Wires 723
12.5 Computer Codes 732
12.6 Multimedia 735 13 Geometrical Theory of Diffraction 741
13.1 Introduction 741
13.2 Geometrical Optics 742
13.3 Geometrical Theory of Diffraction: Edge Diffraction 761
13.4 Computer Codes 829
13.5 Multimedia 831 14 Diffraction by Wedge with Impedance Surfaces 849
14.1 Introduction 849
14.2 Impedance Surface Boundary Conditions 850
14.3 Impedance Surface Reflection Coefficients 851
14.4 The Maliuzhinets Impedance Wedge Solution 854
14.5 Geometrical Optics 856
14.6 Surface Wave Terms 864
14.7 Diffracted Fields 867
14.8 Surface Wave Transition Field 874
14.9 Computations 875
14.10 Multimedia 878 15 Green''s Functions 885
15.1 Introduction 885
15.2 Green''s Functions in Engineering 886
15.3 Sturm-Liouville Problems 891
15.4 Two-Dimensional Green''s Function in Rectangular Coordinates 908
15.5 Green''s Identities and Methods 919
15.6 Green''s Functions of the Scalar Helmholtz Equation 925
15.7 Dyadic Green''s Functions 938
15.8 Multimedia 941 References 941 Problems 942 Appendix I: Identities 947 Appendix II: Vector Analysis 951 Appendix III: Fresnel Integrals 961 Appendix IV: Bessel Functions 967 Appendix V: Legendre Polynomials and Functions 981 Appendix VI: The Method of Steepest Descent (Saddle-Point Method) 997 Index 1003