SØG - mellem flere end 8 millioner bøger:
Viser: An Introduction to Parallel Programming
An Introduction to Parallel Programming Vital Source e-bog
Peter Pacheco og Matthew Malensek
(2021)
An Introduction to Parallel Programming
Peter Pacheco og Matthew Malensek
(2021)
Sprog: Engelsk
Detaljer om varen
- 2. Udgave
- Vital Source searchable e-book (Reflowable pages)
- Udgiver: Elsevier Science (August 2021)
- Forfattere: Peter Pacheco og Matthew Malensek
- ISBN: 9780128046180
- Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples
- Explains how to develop parallel programs using MPI, Pthreads and OpenMP programming models
- A robust package of online ancillaries for instructors and students includes lecture slides, solutions manual, downloadable source code, and an image bank New to this edition:
- New chapters on GPU programming and heterogeneous programming
- New examples and exercises related to parallel algorithms
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- 2. Udgave
- Paperback: 450 sider
- Udgiver: Elsevier Science & Technology (November 2021)
- Forfattere: Peter Pacheco og Matthew Malensek
- ISBN: 9780128046050
As the first undergraduate text to directly address compiling and running parallel programs on multi-core and cluster architecture, this second edition carries forward its clear explanations for designing, debugging and evaluating the performance of distributed and shared-memory programs while adding coverage of accelerators via new content on GPU programming and heterogeneous programming. New and improved user-friendly exercises teach students how to compile, run and modify example programs.
2. Parallel hardware and parallel software
3. Distributed memory programming with MPI
4. Shared-memory programming with Pthreads
5. Shared-memory programming with OpenMP
6. GPU programming with CUDA
7. Parallel program development
8. Where to go from here