Viser: Modelling flexible pavement response and performance

Modelling flexible pavement response and performance

Modelling flexible pavement response and performance

Per Ullidtz
(1998)
Sprog: Engelsk
Polyteknisk Forlag
439,00 kr.
Flere end 10 stk på lager
Hvor kan jeg afhente varen?
Bestil nu og få den leveret inden for 2-3 hverdage.

Detaljer om varen

  • 205 sider
  • Udgiver: Polyteknisk Forlag (Oktober 1998)
  • ISBN: 9788750208051
Textbook concerned with models for predicting the future condition of flexible pavements, as a function of traffic loading, climate, materials, etc., using analytical-empirical methods. With references and index. 
Content   1 Introduction  2 Theory of elasticity    2.1 Elastic parameters    2.2 Stresses and Strains in a continuum  3 Assumptions of the theory of elasticity versus reality   3.1 Stress concentration     3.2 Anisotropy   3.3 Shear sensitivity    3.4 Probabilistic stress distribution  4 Odemark’s method    4.1 Example of the Use of Odemark’s Method    4.2 Westergaard’s equations for rigid pavements 5 The Finite Element Method (FEM)  6 Non-linear models  7 Viscous and visco-elastic modes (Rheology)    7.1 Kelvin model    7.2 Maxwell model    7.3 Burgers model   7.4 Parabolic element    7.5 The SHRP model    7.6 Temperature shift factor  8 Distinct Element Method    8.1 Two dimensional stress distribution    8.2 Biaxial tests on angular elements  9 Structural damage prediction    9.1 Example of HDM III model    9.2 Deflection is a poor substitute for bearing capacity    9.3 Asphalt strain criteria   9.4 Continuum Damage Mechanics        9.4.1 Damage based on Actual Stress        9.4.2 Damage based on Energy Density        9.4.3 Damage based on Delayed Elastic Energy Density    9.5 Finite Element simulation of asphalt damage    9.6 Visible cracks in asphalt pavements    9.7 Cracking of Portland Cement bound materials  10 Plastic deformation 11 Roughness   11.1 The AASHTO design equation for flexible pavements    11.2 Mathematical Model of Pavement Performance (MMOPP)        11.2.1 Spatial variation of pavement parameters       11.2.2 Climatic variations       11.2.3 Loading  12 Determination of Moduli   12.1 Laboratory tests and equations based on standard tests   12.2 In Situ tests       12.2.1 Wave propagation methods        12.2.2 Falling Weight Deflectometer    12.3 Design values 13 Verification of response and performance models   13.1 Verifying response models   13.2 Verifying performance models    13.3 Verification using a PMS (PERS)  14 Surfacing characteristics    14.1 Skid resistance    14.2 Ageing    14.3 Surface wear 15 Uniform subsections 16 User effects    16.1 Vehicle operating costs    16.2 Accident costs    16.3 Other effects  17 Optimisation 18 Conclusion References  Index
1 Introduction
2 Theory of elasticity
2.1 Elastic parameters
2.2 Stresses and Strains in a continuum
3 Assumptions of the theory of elasticity versus reality
3.1 Stress concentration
3.2 Anisotropy
3.3 Shear sensitivity
3.4 Probabilistic stress distribution
4 Odemark’s method
4.1 Example of the Use of Odemark’s Method
4.2 Westergaard’s equations for rigid pavements
5 The Finite Element Method (FEM)
6 Non-linear models
7 Viscous and visco-elastic modes (Rheology)
7.1 Kelvin model
7.2 Maxwell model
7.3 Burgers model
7.4 Parabolic element
7.5 The SHRP model
7.6 Temperature shift factor
8 Distinct Element Method
8.1 Two dimensional stress distribution
8.2 Biaxial tests on angular elements
9 Structural damage prediction
9.1 Example of HDM III model
9.2 Deflection is a poor substitute for bearing capacity
9.3 Asphalt strain criteria
9.4 Continuum Damage Mechanics
9.4.1 Damage based on Actual Stress
9.4.2 Damage based on Energy Density
9.4.3 Damage based on Delayed Elastic Energy Density
9.5 Finite Element simulation of asphalt damage
9.6 Visible cracks in asphalt pavements
9.7 Cracking of Portland Cement bound materials
10 Plastic deformation
11 Roughness
11.1 The AASHTO design equation for flexible pavements
11.2 Mathematical Model of Pavement Performance (MMOPP)
11.2.1 Spatial variation of pavement parameters
11.2.2 Climatic variations
11.2.3 Loading
12 Determination of Moduli
12.1 Laboratory tests and equations based on standard tests
12.2 In Situ tests
12.2.1 Wave propagation methods
12.2.2 Falling Weight Deflectometer
12.3 Design values
13 Verification of response and performance models
13.1 Verifying response models
13.2 Verifying performance models
13.3 Verification using a PMS (PERS)
14 Surfacing characteristics
14.1 Skid resistance
14.2 Ageing
14.3 Surface wear
15 Uniform subsections
16 User effects
16.1 Vehicle operating costs
16.2 Accident costs
16.3 Other effects
17 Optimisation
18 Conclusion
References
Index

Viden forpligter

Har du viden, som andre ingeniører eller ingeniørstuderende kan anvende og drage fordel af - måske i form af en hånd- eller lærebog?


Så vil vi opfordre dig til at give din viden videre til gavn for dine kollegaer i faget, såvel som for de kommende generationer af ingeniører.

At skrive en bog kan virke som en voldsom opgave – men vi kan hjælpe og vejlede dig gennem processen – og bistå med både praktisk og med redaktionel hjælp.

Uanset om du blot har en løs idé, en synopsis, eller måske et hel- eller halvfærdigt manuskript, hører vi gerne fra dig, så kan vi hjælpe med at videreudvikle din idé til en færdig bog.

Send os dit materiale på forlag@polyteknisk.dk.

Vi glæder os til at høre fra dig.

 

Læs mere om at blive forfatter