Viser: Algebraic Topology

Algebraic Topology

Algebraic Topology

Allen Hatcher
(2001)
Sprog: Engelsk
Cambridge University Press
543,00 kr.
Print on demand. Leveringstid vil være ca 2-3 uger.

Detaljer om varen

  • Paperback: 556 sider
  • Udgiver: Cambridge University Press (December 2001)
  • ISBN: 9780521795401
In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book.

Part I. Some Underlying Geometric Notions:
1. Homotopy and homotopy type;
2. Deformation retractions;
3. Homotopy of maps;
4. Homotopy equivalent spaces;
5. Contractible spaces;
6. Cell complexes definitions and examples;
7. Subcomplexes;
8. Some basic constructions;
9. Two criteria for homotopy equivalence;
10. The homotopy extension property;
Part II. Fundamental Group and Covering Spaces:
11. The fundamental group, paths and homotopy;
12. The fundamental group of the circle;
13. Induced homomorphisms;
14. Van Kampen's theorem of free products of groups;
15. The van Kampen theorem;
16. Applications to cell complexes;
17. Covering spaces lifting properties;
18. The classification of covering spaces;
19. Deck transformations and group actions;
20. Additional topics: graphs and free groups;
21. K(G,1) spaces;
22. Graphs of groups;
Part III. Homology:
23. Simplicial and singular homology delta-complexes;
24. Simplicial homology;
25. Singular homology;
26. Homotopy invariance;
27. Exact sequences and excision;
28. The equivalence of simplicial and singular homology;
29. Computations and applications degree;
30. Cellular homology;
31. Euler characteristic;
32. Split exact sequences;
33. Mayer-Vietoris sequences;
34. Homology with coefficients;
35. The formal viewpoint axioms for homology;
36. Categories and functors;
37. Additional topics homology and fundamental group;
38. Classical applications;
39. Simplicial approximation and the Lefschetz fixed point theorem;
Part IV. Cohomology:
40. Cohomology groups: the universal coefficient theorem;
41. Cohomology of spaces;
42. Cup product the cohomology ring;
43. External cup product;
44. Poincaré duality orientations;
45. Cup product;
46. Cup product and duality;
47. Other forms of duality;
48. Additional topics the universal coefficient theorem for homology;
49. The Kunneth formula;
50. H-spaces and Hopf algebras;
51. The cohomology of SO(n);
52. Bockstein homomorphisms;
53. Limits;
54. More about ext;
55. Transfer homomorphisms;
56. Local coefficients;
Part V. Homotopy Theory:
57. Homotopy groups;
58. The long exact sequence;
59. Whitehead's theorem;
60. The Hurewicz theorem;
61. Eilenberg-MacLane spaces;
62. Homotopy properties of CW complexes cellular approximation;
63. Cellular models;
64. Excision for homotopy groups;
65. Stable homotopy groups;
66. Fibrations the homotopy lifting property;
67. Fiber bundles;
68. Path fibrations and loopspaces;
69. Postnikov towers;
70. Obstruction theory;
71. Additional topics: basepoints and homotopy;
72. The Hopf invariant;
73. Minimal cell structures;
74. Cohomology of fiber bundles;
75. Cohomology theories and omega-spectra;
76. Spectra and homology theories;
77. Eckmann-Hilton duality;
78. Stable splittings of spaces;
79. The loopspace of a suspension;
80. Symmetric products and the Dold-Thom theorem;
81. Steenrod squares and powers; Appendix: topology of cell complexes; The compact-open topology.

Søg alle bøger

Titel eller forfatter eller ISBN

Ofte stillede spørgsmål

Hvor kan jeg hente mine bøger?

Hvad er studiepris?

 

Find svarene på disse og andre spørgsmål på FAQ siden 

Fysisk eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.

Find Formlen

- vores egen formelsamling serie - udarbejdet af studerende for studerende og rettet mod dit DTU studie.

 

Find Formlen

 

Serien Find Formlen er udarbejdet af studerende der er langt i studiet og har været hjælpelærere i flere semestre og derfor præcist ved hvad der skal til.


De indeholder de vigtigste og hyppigst forekommende formler, som anvendes i den første del af studiet, og som det er nyttigt at have samlet i én overskuelig og let anvendelig oversigt.

 

Nyhed - kan nu fås som Vital Source Bookshelf digitale bøger

 

Se alle Find Formlen bøger her