Viser: Probabilistic Machine Learning - Advanced Topics
Probabilistic Machine Learning
Advanced Topics
Kevin P. Murphy
(2023)
MIT Press
1.769,00 kr.
1.592,10 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 15 hverdage
om ca. 15 hverdage
Detaljer om varen
- Hardback: 1360 sider
- Udgiver: MIT Press (August 2023)
- ISBN: 9780262048439
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty.
An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.
- Covers generation of high dimensional outputs, such as images, text, and graphs
- Discusses methods for discovering insights about data, based on latent variable models
- Considers training and testing under different distributions
- Explores how to use probabilistic models and inference for causal inference and decision making
- Features online Python code accompaniment
1 Introduction 1 I Fundamentals 3 2 Probability 5 3 Statistics 63 4 Graphical models 143 5 Information theory 217 6 Optimization 255 II Inference 337 7 Inference algorithms: an overview 339 8 Gaussian filtering and smoothing 353 9 Message passing algorithms 395 10 Variational inference 433 11 Monte Carlo methods 477 12 Markov chain Monte Carlo 493 13 Sequential Monte Carlo 537 III Prediction 567 14 Predictive models: an overview 569 15 Generalized linear models 583 16 Deep neural networks 623 17 Bayesian neural networks 639 18 Gaussian processes 673 19 Beyond the iid assumption 727 IV Generation 763 20 Generative models: an overview 765 21 Variational autoencoders 781 22 Autoregressive models 811 23 Normalizing flows 819 24 Energy-based models 839 25 Diffusion models 857 26 Generative adversarial networks 883 V Discovery 915 27 Discovery methods: an overview 917 28 Latent factor models 919 29 State-space models 969 30 Graph learning 1031 31 Nonparametric Bayesian models 1035 32 Representation learning 1037 33 Interpretability 1061 VI Action 1091 34 Decision making under uncertainty 1093 35 Reinforcement learning 1133 36 Causality 1171
Andre har også købt
Probabilistic Machine Learning
An Introduction
Kevin P. Murphy
MIT Press
(2022)
1.449,00 kr.
1.304,10 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 15 hverdage
om ca. 15 hverdage
Pattern Recognition and Machine Learning
Christopher M. Bishop
Springer New York
(2006)
555,00 kr.
499,50 kr.
Bestil nu og få den leveret inden for 2-3 hverdage
Advanced Python Programming
Build High Performance, Concurrent, and Multi-Threaded Apps with Python Using Proven Design Patterns
Gabriele Lanaro, Quan Nguyen og Sakis Kasampalis
Packt Publishing, Limited
(2019)
565,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 14 hverdage
om ca. 14 hverdage