Viser: Probabilistic Machine Learning - An Introduction

Probabilistic Machine Learning - An Introduction

Probabilistic Machine Learning

An Introduction
Kevin P. Murphy
(2022)
MIT Press
1.449,00 kr. 1.304,10 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 15 hverdage

Detaljer om varen

  • Hardback: 864 sider
  • Udgiver: MIT Press (Februar 2022)
  • ISBN: 9780262046824
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory.

This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation.

Probabilistic Machine Learning grew out of the author's 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

1 Introduction 1 I Foundations 29 2 Probability: Univariate Models 31 3 Probability: Multivariate Models 75 4 statistics 103 5 Decision Theory 163 6 Information Theory 199 7 Linear Algebra 221 8 Optimization 269 II Linear Models 315 9 Linear Discriminant Analysis 317 10 Logistic Regression 333 11 Linear Regression 365 12 Generalized Linear Models * 409 III Deep Neural Networks 417 13 Neural Networks for Structured Data 419 14 Neural Networks for Images 461 15 Neural Networks for Sequences 497 IV Nonparametric Models 539 16 Exemplar-based Methods 541 17 Kernel Methods * 561 18 Trees, Forests, Bagging, and Boosting 597 V Beyond Supervised Learning 619 19 Learning with Fewer Labeled Examples 621 20 Dimensionality Reduction 651 21 Clustering 709 22 Recommender Systems 735 23 Graph Embeddings * 747 A Notation 767

Andre har også købt

miniaturebillede af omslaget til Number Theory

Number Theory

George E. Andrews
Dover Publications, Incorporated (1994)
199,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 15 hverdage
miniaturebillede af omslaget til Visual Differential Geometry and Forms - A Mathematical Drama in Five Acts

Visual Differential Geometry and Forms

A Mathematical Drama in Five Acts
Tristan Needham
Princeton University Press (2021)
568,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 15 hverdage
miniaturebillede af omslaget til Artificial Intelligence: a Modern Approach, Global Edition, 4. udgave

Artificial Intelligence: a Modern Approach, Global Edition

Stuart Russell og Peter Norvig
Pearson Education, Limited (2021)
699,00 kr. 629,10 kr.
Bestil nu og få den leveret inden for 2-3 hverdage
miniaturebillede af omslaget til Time Series Analysis

Time Series Analysis

Henrik Madsen
CRC Press LLC (2005)
599,00 kr. 539,10 kr.
Bestil nu og få den leveret inden for 2-3 hverdage
miniaturebillede af omslaget til Computer Vision - Algorithms and Applications

Computer Vision

Algorithms and Applications
Richard Szeliski
Springer International Publishing AG (2022)
699,00 kr. 629,10 kr.
Bestil nu og få den leveret inden for 2-3 hverdage

Har du brug for en faktura?

Har du brug for en faktura udstedt til din arbejdsplads, kan du med fordel oprette en konto.

 

Det tager kun et øjeblik og kontoen er klar til brug med det samme. Du skal blot bruge firmaets CVR nummer.