Find andre bøger

Titel eller forfatter eller ISBN

Viser: Hybrid Fiber Composites - Materials, Manufacturing, Process Engineering

Hybrid Fiber Composites, 1. udgave
Søgbar e-bog

Hybrid Fiber Composites Vital Source e-bog

Anish Khan, Sanjay Mavinkere Rangappa og Mohammad Jawaid
(2020)
John Wiley & Sons
1.626,00 kr.
Leveres umiddelbart efter køb
Hybrid Fiber Composites - Materials, Manufacturing, Process Engineering

Hybrid Fiber Composites

Materials, Manufacturing, Process Engineering
Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin og Abdullah M. Asiri
(2020)
Sprog: Engelsk
John Wiley & Sons, Incorporated
1.784,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages)
  • Udgiver: John Wiley & Sons (Juli 2020)
  • Forfattere: Anish Khan, Sanjay Mavinkere Rangappa og Mohammad Jawaid
  • ISBN: 9783527824588
Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry. After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 10 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Hardback: 438 sider
  • Udgiver: John Wiley & Sons, Incorporated (September 2020)
  • Forfattere: Anish Khan, Sanjay Mavinkere Rangappa, Mohammad Jawaid, Suchart Siengchin og Abdullah M. Asiri
  • ISBN: 9783527346721
Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry.

After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.
About the Editors xix 1 Natural and Synthetic Fibers for Hybrid Composites 1 Brijesh Gangil, Lalit Ranakoti, Shashikant Verma, Tej Singh, and Sandeep Kumar
1.1 Introduction 1
1.2 Natural Fibers 2
1.3 Microstructure of Natural Fibers 3
1.4 Natural Fiber-Reinforced Polymer Composites 3
1.4.1 Synthetic Fibers 7
1.4.2 Glass Fibers 8
1.4.3 Carbon Fibers 8
1.4.4 Kevlar or Aramid Fibers 9
1.4.5 Comparison Between Natural and Synthetic Fibers 9
1.5 Hybrid Fiber-Based Polymer Composites 10
1.5.1 Applications 11
1.6 Conclusion 12 References 13 2 Effect of Process Engineering on the Performance of Hybrid Fiber Composites 17 Madhu Puttegowda, Yashas Gowda Thyavihalli Girijappa, Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, and Suchart Siengchin
2.1 Introduction 17
2.2 Fibers 18
2.3 Polymers 20
2.4 Hybrid Polymer Composites 21
2.5 Fiber Extraction Methods 22
2.6 Fiber Treatments 22
2.7 Processing Methods of Hybrid Composites 24
2.7.1 Pultrusion 24
2.7.2 Hand Lay-up/Wet Lay-up 25
2.7.3 Vacuum Bagging 25
2.7.4 Filament Winding 26
2.7.5 Resin Transfer Molding 27
2.7.6 Compression Molding 27
2.7.7 Injection Molding 28
2.8 Application of Each Hybrid Polymer Composite Processing Methods 29
2.8.1 Pultrusion 29
2.8.2 Hand Lay-up 29
2.8.3 Vacuum Bagging 31
2.8.4 Filament Winding 31
2.8.5 Resin Transfer Molding 31
2.8.6 Compression Molding 31
2.8.7 Injection Molding 32
2.9 Conclusion 32 References 32 3 Mechanical and Physical Test of Hybrid Fiber Composites 41 Mohit Hemath, Arul Mozhi Selvan Varadhappan, Hemath Kumar Govindarajulu, Sanjay Mavinkere Rangappa, Suchart Siengchin, and Harinandan Kumar
3.1 Introduction 41
3.2 Materials and Methods 44
3.2.1 Materials 44
3.2.2 Extraction of Sugarcane Nanocellulose Fiber (SNCF) 44
3.2.3 Synthesis of Al-SiC Nanoparticles 44
3.2.4 Fabrication of SNCF/Al-SiC Vinyl Ester Nanocomposites 44
3.2.5 Design of Experiments (DOE) 45
3.2.6 Development of Experimental Models and Optimization 45
3.2.7 Characterization on SNCF/Al-SiC Vinyl Ester Hybrid Nanocomposites 46
3.2.7.1 FTIR Spectra and XRD Curves 46
3.2.7.2 Physical Properties 47
3.2.7.3 Mechanical Properties 47
3.2.7.4 Viscoelastic Properties 48
3.2.7.5 Morphological Properties 48
3.3 Results and Discussion 48
3.3.1 Optimization 48
3.3.2 Maximization 52
3.3.3 FTIR and XRD Curves 54
3.3.4 Mechanical Properties 55
3.3.4.1 Flexural Properties 55
3.3.4.2 Morphological Properties 57
3.3.4.3 Compression Properties 58
3.3.4.4 Tensile Properties 58
3.3.5 Viscoelastic Properties 58
3.3.5.1 Storage Modulus 58
3.3.5.2 Loss Modulus 60
3.3.5.3 Damping Factor 60
3.3.5.4 Glass Transition Temperature 60
3.3.6 Impact Strength 61
3.3.7 Vickers Hardness 62
3.3.8 Physical Properties 62
3.4 Conclusion 63 References 63 4 Experimental Investigations in the Drilling of Hybrid Fiber Composites 69 Sathish Kumar Palaniappan, Samir Kumar Pal, Rajasekar Rathanasamy, Gobinath Velu Kaliyannan, and Moganapriya Chinnasamy
4.1 Introduction 69
4.2 Characteristics of Drilling 70
4.3 Hybrid Fiber Composites 70
4.4 Machining Limitation on Hybrid Fiber Composite Drilling 71
4.5 Investigation of Hybrid Fiber Composites Drilling 71
4.5.1 Condition for Hybrid Composites Drill 72
4.5.2 Factors Affecting Drilling 72
4.5.3 Drilling of GF-Reinforced Hybrid Composites 73
4.5.4 Survey on NF-Reinforced Hybrid Composites Drilling 75
4.5.5 Drilling of CF Reinforced Hybrid Composites 77
4.6 Conclusion 79 References 79 5 Fracture Analysis on Silk and Glass Fiber-Reinforced Hybrid Composites 87 Gangaplara Basavarajappa Manjunatha and Kurki Nagaraja Bharath
5.1 Introduction 87
5.2 Materials and Methods 88
5.2.1 Materials and Specimen Preparation 88
5.2.2 Compact Tension Shear (CTS) Test 90
5.2.3 Single-Edge Notched Bend (SENB) 90
5.3 Results and Discussion 92
5.3.1 Compact Tension Shear (CTS) Test 92
5.3.2 Mode I, Mode II, and Mixed Mode Fracture Toughness for Different Loading Angle 93
5.3.3 Single-Edge Notched Bend (SENB) 93
5.3.4 Fracture Toughness of SENB Test 95
5.4 Conclusion 96 References 96 6 Failure Mechanisms of Fiber Composites 99 a C at alin Iulian Pruncu and Maria-Luminita Scutaru
6.1 Introduction 99
6.2 Industrial Benefits and Applications 100
6.3 Materials for Reinforcing 104
6.3.1 Composites Reinforced with Continuous Fibers 104
6.3.2 Composites Reinforced with Discontinuous Fibers 105
6.3.3 Composites Reinforced with Fillers 106
6.4 Resin Type 106
6.4.1 Epoxy Resins 106
6.4.2 Formaldehyde Resins 107
6.4.3 Polyurethane Resins 107
6.4.4 Polyester Resins 108
6.4.5 Silicone Resins 108
6.5 Interfacial of Composite Structure 109
6.6 Micromechanics 110
6.6.1 Mechanical Properties 110
6.6.1.1 Coefficients of Thermal Expansion and Heat Transfer Properties 111
6.7 Short Overview of Specific Failure Modes 112
6.8 Future Perspective 113
6.9 Conclusions 114 References 114 7 Ballistic Behavior of Fiber Composites 117 Ignacio Rubio, Josué Aranda Ruiz, Marcos Rodriguez Millan, José Antonio Loya, and Marta Maria Moure
7.1 Introduction 117
7.2 High-Velocity Impact Test 119
7.2.1 Material 119
7.2.2 Experimental Setup 119
7.2.3 Analysis and Results 121
7.2.3.1 Ballistic Curves 121
7.2.3.2 Failure Modes 123
7.2.3.3 Back-Face Displacement 123
7.3 Computational Methods 124
7.4 Conclusions 126 References 127 8 Mechanical Behavior of Synthetic/Natural Fibers in Hybrid Composites 129 Navasingh Rajesh Jesudoss Hynes, Ramakrishnan Sankaranarayanan, Jegadeesaperumal Senthil Kumar, Sanjay Mavinkere Rangappa, and Suchart Siengchin
8.1 Introduction 129
8.2 Impact Strength of Natural Fiber (Flax), Synthetic Fiber (Carbon), and Hybrid (Carbon/Flax) Composites 130
8.3 Kenaf/Aramid (Epoxy) Hybrid Composites with Different Fiber Orientation 132
8.4 Impact Strength of Carbon/Flax (Epoxy) Hybrid Composites with Different Fiber Orientation 134
8.5 Comparison of Absorbed Impact Energy of Different Hybrid Composites 135
8.6 Comparison of Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 137
8.6.1 Tensile Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 138
8.6.2 Flexural Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 139
8.6.3 Impact Strength of Natural Fiber (Ramie), Synthetic Fiber (Glass), and Hybrid (Ramie/Glass) Composites 140
8.7 Summary and Outlook 141 References 143 9 Bast Fiber-Based Polymer Composites 147 Sandeep Kumar, Brijesh Gangil, Krishan Kant Singh Mer, Manoj Kumar Gupta, and Vinay Kumar Patel
9.1 Introduction 147
9.1.1 Bast Fiber as Reinforcing Material 149
9.2 Polymer Composites Reinforced with Bast Fibers 149
9.2.1 Polymer Composites Reinforced with Flax Fibers 150
9.2.2 Polymer Composites Reinforced with Grewia Optiva Fiber 152
9.2.3 Polymer Composites Reinforced with Hemp Fiber 155
9.2.4 Polymer Composites Reinforced with Nettle Fiber 156
9.2.5 Polymer Composites Reinforced with Jute Fiber 158
9.3 Applications of Polymer Composites Reinforced with Bast Fibers 160
9.4 Conclusion 161 References 161 10 Flame-Retardant Balsa Wood/GFRP Sandwich Composites, Mechanical Evaluation, and Comparisons with Other Sandwich Composites 169 Subin Shaji George, Vivek Arjuna, Venkata Prudhvi Pallapolu, and Padmanabhan Krishnan
10.1 Introduction 169
10.2 Literature Survey 171
10.2.1 Sandwich Composite Structure and Properties 171
10.2.2 Knowledge Gained from the Literature Review 172
10.2.3 Gaps Identified from Literature Survey 172
10.2.4 Objective of the Project 173
10.2.5 Motivation 173
10.3 Methodology and Experimental Work 173
10.3.1 Hand Lay-up Procedure 173
10.3.2 Vacuum Bagging 174
10.3.3 Testing and Evaluations 175
10.3.4 Technical Specification 177
10.3.5 Design Approach Details 177
10.3.6 Codes and Standards 178
10.3.7 Fabrication Methodology 178
10.4 Results and Discussion 179
10.4.1 Compression Testing 179
10.4.1.1 Flatwise Transverse Grain Test 179
10.4.1.2 Edgewise Transverse Grain Compression 180
10.4.1.3 Edgewise Longitudinal Grain Compression 182
10.4.1.4 Discussion and Comment (Compression Test) 183
10.4.2 Three-Point Bending Test (Flexural Test) 183
10.4.2.1 Experimental Results for Three-Point Bending Test of Balsa Wood 184
10.4.2.2 Experimental Results for Three-Point Bending Test of Composite of Skin-to-Core Ratio 1
: 1 184
10.4.2.3 Experimental Results for Three-Point Bending Test of Composite of Skin-to-Core Ratio 2
: 1 184
10.4.2.4 Experimental Result for Three-Point Bending Test of Composite of S