Viser: Pattern Recognition and Machine Learning
Pattern Recognition and Machine Learning
Christopher M. Bishop
(2006)
Sprog: Engelsk
Detaljer om varen
- Hardback: 738 sider
- Udgiver: Springer New York (August 2006)
- ISBN: 9780387310732
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Andre der købte denne bog købte også:
Hvordan ser fremtiden ud med kunstig intelligens?
Thomas Bolander
The Elements of Statistical Learning
Data Mining, Inference, and Prediction
Trevor Hastie, Robert Tibshirani, Jerome Friedman og J. H. Friedman
om ca. 15 hverdage
Convex Optimization
Stephen Boyd og Lieven Vandenberghe
om ca. 15 hverdage