Viser: Corrosion, Theory and Practice
Corrosion, Theory and Practice Vital Source e-bog
Per Møller og Lars Pleth Nielsen
(2022)
Møller&Nielsen
875,00 kr.
Leveres umiddelbart efter køb
Corrosion, Theory and Practice
Per Møller og Lars Pleth Nielsen
(2022)
Sprog: Engelsk
Møller & Nielsen
975,00 kr.
Flere end 10 stk på lager
Hvor kan jeg afhente varen?Detaljer om varen
- 1. Udgave
- Vital Source searchable e-book (Fixed pages)
- Udgiver: Møller&Nielsen (December 2022)
- Forfattere: Per Møller og Lars Pleth Nielsen
- ISBN: 9788771252101
With our book “Corrosion – Theory and Practice”, we intend to give the reader an easy-to-read guide to understanding the most important and fundamental aspects of corrosion and corrosion mechanisms.
Throughout the book, our readers will develop a comprehensive overview of potential corrosion issues based on a combination of physical observations and thermodynamic considerations supported by examples of Pourbaix diagrams. With the book, the reader will be able to select the optimal materials and corrosion strategies to create material solutions beyond state-of-the-art.
The book not only provides different solutions and combinations; it also enables the readers to design long-lasting solutions for the environment in which they are used. To obtain a long service life for components and devices, it is of utmost importance to match the applied base materials and the added corrosion-inhibiting surface treatment(s) to the environment in which the developed solution is intended to be fully functionable.
Like the Advanced Surface Technology book, our Corrosion book is intended both as a reference book for small and large scale industries and as a textbook for students studying at Bachelor’s, Master’s as well as PhD level to be used at universities and engineering schools. It can be read from the beginning to the end, be used as a practical reference tool or as a day-to-day handbook.
Throughout the book, our readers will develop a comprehensive overview of potential corrosion issues based on a combination of physical observations and thermodynamic considerations supported by examples of Pourbaix diagrams. With the book, the reader will be able to select the optimal materials and corrosion strategies to create material solutions beyond state-of-the-art.
The book not only provides different solutions and combinations; it also enables the readers to design long-lasting solutions for the environment in which they are used. To obtain a long service life for components and devices, it is of utmost importance to match the applied base materials and the added corrosion-inhibiting surface treatment(s) to the environment in which the developed solution is intended to be fully functionable.
Like the Advanced Surface Technology book, our Corrosion book is intended both as a reference book for small and large scale industries and as a textbook for students studying at Bachelor’s, Master’s as well as PhD level to be used at universities and engineering schools. It can be read from the beginning to the end, be used as a practical reference tool or as a day-to-day handbook.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: Udløber ikke.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: Bogen kan ikke printes
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: Udløber ikke.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: Bogen kan ikke printes
Detaljer om varen
- Udgiver: Møller & Nielsen (December 2022)
- Forfattere: Per Møller og Lars Pleth Nielsen
- ISBN: 9788792765529
With our book “Corrosion – Theory and Practice”, we intend to give the reader an easy-to-read guide to understanding the most important and fundamental aspects of corrosion and corrosion mechanisms.
Throughout the book, our readers will develop a comprehensive overview of potential corrosion issues based on a combination of physical observations and thermodynamic considerations supported by examples of Pourbaix diagrams. With the book, the reader will be able to select the optimal materials and corrosion strategies to create material solutions beyond state-of-the-art.
The book not only provides different solutions and combinations; it also enables the readers to design long-lasting solutions for the environment in which they are used. To obtain a long service life for components and devices, it is of utmost importance to match the applied base materials and the added corrosion-inhibiting surface treatment(s) to the environment in which the developed solution is intended to be fully functionable.
Like the Advanced Surface Technology book, our Corrosion book is intended both as a reference book for small and large scale industries and as a textbook for students studying at Bachelor’s, Master’s as well as PhD level to be used at universities and engineering schools. It can be read from the beginning to the end, be used as a practical reference tool or as a day-to-day handbook.
Throughout the book, our readers will develop a comprehensive overview of potential corrosion issues based on a combination of physical observations and thermodynamic considerations supported by examples of Pourbaix diagrams. With the book, the reader will be able to select the optimal materials and corrosion strategies to create material solutions beyond state-of-the-art.
The book not only provides different solutions and combinations; it also enables the readers to design long-lasting solutions for the environment in which they are used. To obtain a long service life for components and devices, it is of utmost importance to match the applied base materials and the added corrosion-inhibiting surface treatment(s) to the environment in which the developed solution is intended to be fully functionable.
Like the Advanced Surface Technology book, our Corrosion book is intended both as a reference book for small and large scale industries and as a textbook for students studying at Bachelor’s, Master’s as well as PhD level to be used at universities and engineering schools. It can be read from the beginning to the end, be used as a practical reference tool or as a day-to-day handbook.
CHAPTER 1: CORROSION 1
1.1 Introduction 1
1.1.1 What is corrosion? 1
1.1.2 The consequences of corrosion 2
CHAPTER 2: THERMODYNAMIC AND EQUILIBRIUM
POTENTIALS 9
2.1 The Standard Electrode potential and its
dependence of the electrolyte 9
2.2 Introduction to the thermodynamic
properties: U, F, H, G and S 10
2.2.1 Internal energy (U) 10
2.2.2 Free energy or Helmholtz free energy (F) 12
2.2.3 Enthalpy (H) 12
2.2.4 Gibbs free energy (G) 13
2.2.5 Entropy (S) 15
2.3 Electrochemistry and Gibbs free energy 20
2.4 Activity and concentration 29
2.5 Thermodynamic and the equilibrium potential 30
2.5.1 The electrochemical potential in a historical perspective 30
2.6 Introduction to Pourbaix diagrams 44
2.7 General characteristics for a Pourbaix diagram 49
2.8 How to construct a Pourbaix diagram? 53
2.9 Reduction of hydrogen ions - the hydrogen reaction 54
2.10 Reduction of oxygen - the oxygen reaction 55
2.11 Calculating the Pourbaix diagram for the
iron-water system 58
2.12 Calculating the Pourbaix diagram for the
zinc-water system 65
2.13 Electrochemical cells - the anode and cathode concept 72
2.14 Electrochemical cells 73
2.15 Galvanic cells 80
? XII
CHAPTER 3: ELECTRODE KINETICS 95
3.1 Corrosion potential, polarization and Pourbaix diagrams 95
3.1.1 Introduction to the corrosion potential 95
3.2 Reference Electrodes 102
3.3 Introduction to important cathode and anode reactions 108
3.4 Introduction to polarization and overpotentials 114
3.4.1 Activation polarization, ?activation 116
3.4.2 Concentration polarization, ?concentration 118
3.4.3 Resistance polarization, ?resistance 122
3.5 Combination of the three polarization types 123
3.6 Polarization curves and Pourbaix diagrams 125
CHAPTER 4: CORROSION TYPES 135
4.1 introduction to corrosion types 135
4.2 Even or uniform corrosion 139
4.3 Galvanic corrosion 145
4.3.1 Factors influencing galvanic corrosion 149
4.4 Selective corrosion 152
4.4.1 Hard metal 160
4.4.2 Dezincification 162
4.4.3 Graphitization 166
4.4.4 Denickelification, decobaltification and
selective corrosion of silver 170
4.5 Localized corrosion 170
4.5.1 Crevice corrosion 170
4.5.2 Pitting corrosion 177
4.5.3 Filiform corrosion 182
4.6 Cover corrosion 190
4.7 Stray current corrosion 193
4.8 Corrosive wear 207
4.8.1 Abrasive wear 208
4.8.2 Adhesive wear 212
4.8.3 Erosive wear 214
4.8.4 Fretting wear 218
4.8.5 Evaluating corrosive wear 221
4.9 Thermogalvanic corrosion 223
4.10 Intergranular corrosion 226
4.11 Environmentally assisted cracking (EAC) 239
4.11.1 Stress corrosion cracking (SCC) 242
4.11.2 Hydrogen embrittlement (HE) 247
4.11.3 Sulfide stress cracking (SSC) 252
4.11.4 Corrosion fatigue (CF) 253
4.11.5 Liquid metal embrittlement (LME) 255
4.12 Photo corrosion 257
XIII ?
CHAPTER 5: CORROSION ENVIRONMENTS 263
5.1 Introduction to atmospheric corrosion 263
5.2 Corrosion in water environment 285
5.2.1 Corrosion in copper pipes 294
5.2.2 Corrosion in stainless steel water pipes 298
5.3 Microbiologically influenced corrosion (MIC) 304
5.3.1 The thermodynamics behind MIC 305
5.3.2 Nitrate respiration or denitrification 307
5.3.3 Carbonate respiration and acetate fermentation 309
5.3.4 Sulfur respiration 310
5.3.5 Coupled reactions 313
5.4 Corrosion in reinforced concrete 316
5.4.1 Re-alkalization 324
5.4.2 Chloride extraction 325
5.5 Corrosion in soil 326
5.5.1 Electrical factors 326
5.5.2 Properties of the surrounding electrolyte 327
5.5.3 Access to oxygen 330
5.6 High temperature corrosion 331
5.6.1 Introduction 331
5.6.2 Thermodynamics 332
5.6.3 The Ellingham diagram 335
5.6.4 Oxide phase diagrams 337
5.6.5 Volatile oxides 338
5.6.6 Mechanisms of oxidation 339
5.6.7 Kinetics of high temperature corrosion 340
5.6.8 Oxidation of alloys 342
5.6.9 Hot corrosion 343
5.6.10 Metal dusting 346
5.7 Corrosion in oil and biogas 350
5.7.1 Corrosion in biogas 354
5.7.2 Minimizing corrosion in oil and gas 357
5.8 Corrosion in the food industry 358
5.9 Corrosion in electronics 363
5.9.1 Introduction 363
5.9.2 Materials and Electronics 364
5.9.2.1 Integrated circuits (ICs) 364
5.9.2.2 Printed circuit boards (PCBs) 366
5.9.2.3 Contacts and connectors 367
5.9.2.4 Magnetic storage medium 368
5.9.2.5 Structural supports, frames and EMC shielding 369
5.9.3 Corrosion in electronic 370
5.9.3.1 Different corrosion types observed in electronic devices 373
5.9.3.2 Gas phase corrosion 373
5.9.3.3 Anodic corrosion and electrolytic metal migration 374
5.9.3.4 Cathodic corrosion 375
5.9.3.5 Galvanic corrosion 376
5.9.3.6 Fretting corrosion 381
5.9.3.7 Corrosion caused by magnetic fields and induced currents 381
5.9.4 References 382
? XIV
5.10 Corrosion in cars 383
5.10.1 Protective coatings 390
5.10.2 Hot melt wax coatings 390
5.11 Corrosion caused by bird droppings 392
5.12 Corrosion in medical implants and ni dermatitis 397
5.12.1 Nickel allergy or nickel dermatitis 401
5.12.2 Test of metal ion release 403
CHAPTER 6: DETERMINING CORROSION RATES 407
6.1 Introduction 407
6.2 The weight gain method 411
6.3 Polarization techniques using potentiostats 414
6.3.1 Cyclic polarization scans 421
6.3.2 Estimation of corrosion rates by Tafel lines 424
6.4 The Linear Polarization Resistance (LPR) method 425
6.5 The Electrical resistance (ER) method 427
6.6 The Quartz Crystal Microbalance (QCM) method 431
6.7 The Electrochemical Impedance Spectroscopy
(EIS) method 435
6.7.1 Introduction to EIS 435
6.7.2 Modelling of simple capacitive surfaces 437
6.7.3 Analysis of EIS data 440
6.7.4 Constant phase element 443
6.7.5 EIS analysis of a coating 444
6.7.6 Unstable systems 447
6.7.7 Systems under diffusional control 448
6.7.8 Data analysis 449
6.7.9 Further reading 450
6.8 Selected methods for detecting porosities in coatings 451
6.9 Test methods for evaluating coating durability 456
6.9.1 Evaluating corrosion and durability 457
6.9.2 Field testing - weathering 458
6.9.3 Accelerated test methods 466
6.9.4 Chamber tests 472
6.9.4.1 Light exposure tests 472
6.9.4.2 Salt spray tests 474
6.9.4.3 Kesternich test 478
6.9.4.4 Humidity test 479
XV ?
CHAPTER 7: OPTIMAL MATERIAL AND SURFACE
SELECTION FOR CORROSION PROTECTION 485
7.1 Corrosion protection strategies 485
7.2 Cathodic and anodic protection 488
7.2.1 Introduction 488
7.2.2 Cathodic protection 490
7.2.3 Impressed current 491
7.2.4 Anodic protection 495
7.2.5 Ennoblement of zinc 500
7.3 Corrosion inhibitors 504
7.3.1 Classification of corrosion inhibitors 504
7.3.2 Environmental conditioners (scavengers) 505
7.3.3 Liquid phase inhibitors 510
7.3.4 Vapour Phase Inhibitors (VPI’s) 520
7.3.5 Green corrosion inhibitors 522
7.4 Material selection 524
7.5 CORTEN steel and cast iron 527
7.5.1 CORTEN® steel or weathering steel 528
7.5.2 Cast Iron 530
7.6 Stainless steel and free maching steels 533
7.6.1 The early history of stainless steel 533
7.6.2 Stainless steel alloy elements, microstructure
and nomenclature 537
7.6.3 Alloying elements and their function 543
7.6.4 The different stainless steel categories 550
7.6.4.1 Austenitic steels 550
7.6.4.2 Austenitic chrome manganese steels 551
7.6.4.3 Ferritic steels 554
7.6.4.4 Ferritic-Austenitic (duplex) steels 554
7.6.4.5 Martensitic and martensitic-austenitic steels 556
7.6.5 Common corrosion types in stainless steel 564
7.6.6 General corrosion or uniform corrosion 565
7.6.7 Pitting and crevice corrosion 566
7.6.8 Stress corrosion cracking 569
7.6.9 Intergranular corrosion 570
7.6.10 Galvanic corrosion 572
7.7 Nickel and nickel alloys 573
7.8 Titanium and titanium alloys 580
7.8.1 Classification of alloys 583
7.8.2 Corrosion of titanium alloys 589
7.8.3 Effect of alloying elements 592
7.8.4 Stress corrosion cracking of titanium alloys 592
7.8.5 Effect of alloy microstructure on stress corrosion cracking 593
7.9 Copper and copper alloys 595
7.9.1 Copper-zinc alloys (brasses) 602
7.9.2 Silicon brasses 604
7.9.3 Tin bronzes 607
7.9.4 Tin brass 608
7.9.5 Nickel-tin bronzes 609
7.9.6 Aluminum bronzes 609
? XVI
7.9.7 Manganese bronzes 612
7.9.8 Copper beryllium alloys 613
7.9.9 Copper-nickel 614
7.9.10 Nickel silvers 615
7.10 Zinc and diecasted zinc 616
7.10.1 Surface treatment of zinc 624
7.11 Aluminum and aluminum alloys 626
7.11.1 Aluminum 626
7.11.2 Aluminum alloys 626
7.11.3 Alloys suitable for casting 628
7.11.4 Wrought alloys 629
7.11.4.1 Typical microstructure of aluminum alloys 630
7.11.5 Aluminum recycling 632
7.11.6 Corrosion of aluminum and aluminum alloys 633
7.11.6.1 Corrosion of pure aluminum 633
7.11.6.2 Corrosion of aluminum alloys 635
7.11.6.2.1 Grain boundary precipitation and effects on corrosion 635
7.11.6.2.2 Role of the chemical composition of intermetallic
particles in corrosion 636
7.11.6.2.3 Selection of the alloy 639
7.11.7 The effect of the environment on corrosion
of aluminum and its alloys 640
7.11.7.1 Oxygen content 640
7.11.7.2 The impact of ph on the corrosion of aluminum 641
7.11.7.3 The impact of temperature on the corrosion of aluminum 641
7.12 Magnesium alloys 642
7.12.1 Alloy labelling and tempering 645
7.12.2 Cast alloys 646
7.12.3 Wrought alloys 647
7.12.4 Corrosion of Magnesium alloys 647
7.12.5 Galvanic corrosion 648
7.12.6 Influence of microstructure on corrosion
of magnesium alloys 649
7.13 Precious metals 652
7.13.1 Gold 653
7.13.2 Silver 657
7.13.3 Rhenium 663
7.13.4 The platinum group metals (PGMs) 664
7.13.4.1 Platinum 665
7.13.4.2 Palladium 667
7.13.4.3 Rhodium 672
7.13.4.4 Iridium 674
7.13.4.5 Ruthenium 677
7.13.4.6 Osmium 678
7.13.4.7 Ellingham diagrams for noble metal oxides 679
7.14 Cermets (hardmetals) 681
7.15 Corrosion of polymers 685
7.15.1 Physical aging 686
7.15.2 Thermal aging 688
7.15.3 Thermo oxidation 692
7.15.4 Chemical aging 693
7.15.5 Aging by chlorine 695
1.1 Introduction 1
1.1.1 What is corrosion? 1
1.1.2 The consequences of corrosion 2
CHAPTER 2: THERMODYNAMIC AND EQUILIBRIUM
POTENTIALS 9
2.1 The Standard Electrode potential and its
dependence of the electrolyte 9
2.2 Introduction to the thermodynamic
properties: U, F, H, G and S 10
2.2.1 Internal energy (U) 10
2.2.2 Free energy or Helmholtz free energy (F) 12
2.2.3 Enthalpy (H) 12
2.2.4 Gibbs free energy (G) 13
2.2.5 Entropy (S) 15
2.3 Electrochemistry and Gibbs free energy 20
2.4 Activity and concentration 29
2.5 Thermodynamic and the equilibrium potential 30
2.5.1 The electrochemical potential in a historical perspective 30
2.6 Introduction to Pourbaix diagrams 44
2.7 General characteristics for a Pourbaix diagram 49
2.8 How to construct a Pourbaix diagram? 53
2.9 Reduction of hydrogen ions - the hydrogen reaction 54
2.10 Reduction of oxygen - the oxygen reaction 55
2.11 Calculating the Pourbaix diagram for the
iron-water system 58
2.12 Calculating the Pourbaix diagram for the
zinc-water system 65
2.13 Electrochemical cells - the anode and cathode concept 72
2.14 Electrochemical cells 73
2.15 Galvanic cells 80
? XII
CHAPTER 3: ELECTRODE KINETICS 95
3.1 Corrosion potential, polarization and Pourbaix diagrams 95
3.1.1 Introduction to the corrosion potential 95
3.2 Reference Electrodes 102
3.3 Introduction to important cathode and anode reactions 108
3.4 Introduction to polarization and overpotentials 114
3.4.1 Activation polarization, ?activation 116
3.4.2 Concentration polarization, ?concentration 118
3.4.3 Resistance polarization, ?resistance 122
3.5 Combination of the three polarization types 123
3.6 Polarization curves and Pourbaix diagrams 125
CHAPTER 4: CORROSION TYPES 135
4.1 introduction to corrosion types 135
4.2 Even or uniform corrosion 139
4.3 Galvanic corrosion 145
4.3.1 Factors influencing galvanic corrosion 149
4.4 Selective corrosion 152
4.4.1 Hard metal 160
4.4.2 Dezincification 162
4.4.3 Graphitization 166
4.4.4 Denickelification, decobaltification and
selective corrosion of silver 170
4.5 Localized corrosion 170
4.5.1 Crevice corrosion 170
4.5.2 Pitting corrosion 177
4.5.3 Filiform corrosion 182
4.6 Cover corrosion 190
4.7 Stray current corrosion 193
4.8 Corrosive wear 207
4.8.1 Abrasive wear 208
4.8.2 Adhesive wear 212
4.8.3 Erosive wear 214
4.8.4 Fretting wear 218
4.8.5 Evaluating corrosive wear 221
4.9 Thermogalvanic corrosion 223
4.10 Intergranular corrosion 226
4.11 Environmentally assisted cracking (EAC) 239
4.11.1 Stress corrosion cracking (SCC) 242
4.11.2 Hydrogen embrittlement (HE) 247
4.11.3 Sulfide stress cracking (SSC) 252
4.11.4 Corrosion fatigue (CF) 253
4.11.5 Liquid metal embrittlement (LME) 255
4.12 Photo corrosion 257
XIII ?
CHAPTER 5: CORROSION ENVIRONMENTS 263
5.1 Introduction to atmospheric corrosion 263
5.2 Corrosion in water environment 285
5.2.1 Corrosion in copper pipes 294
5.2.2 Corrosion in stainless steel water pipes 298
5.3 Microbiologically influenced corrosion (MIC) 304
5.3.1 The thermodynamics behind MIC 305
5.3.2 Nitrate respiration or denitrification 307
5.3.3 Carbonate respiration and acetate fermentation 309
5.3.4 Sulfur respiration 310
5.3.5 Coupled reactions 313
5.4 Corrosion in reinforced concrete 316
5.4.1 Re-alkalization 324
5.4.2 Chloride extraction 325
5.5 Corrosion in soil 326
5.5.1 Electrical factors 326
5.5.2 Properties of the surrounding electrolyte 327
5.5.3 Access to oxygen 330
5.6 High temperature corrosion 331
5.6.1 Introduction 331
5.6.2 Thermodynamics 332
5.6.3 The Ellingham diagram 335
5.6.4 Oxide phase diagrams 337
5.6.5 Volatile oxides 338
5.6.6 Mechanisms of oxidation 339
5.6.7 Kinetics of high temperature corrosion 340
5.6.8 Oxidation of alloys 342
5.6.9 Hot corrosion 343
5.6.10 Metal dusting 346
5.7 Corrosion in oil and biogas 350
5.7.1 Corrosion in biogas 354
5.7.2 Minimizing corrosion in oil and gas 357
5.8 Corrosion in the food industry 358
5.9 Corrosion in electronics 363
5.9.1 Introduction 363
5.9.2 Materials and Electronics 364
5.9.2.1 Integrated circuits (ICs) 364
5.9.2.2 Printed circuit boards (PCBs) 366
5.9.2.3 Contacts and connectors 367
5.9.2.4 Magnetic storage medium 368
5.9.2.5 Structural supports, frames and EMC shielding 369
5.9.3 Corrosion in electronic 370
5.9.3.1 Different corrosion types observed in electronic devices 373
5.9.3.2 Gas phase corrosion 373
5.9.3.3 Anodic corrosion and electrolytic metal migration 374
5.9.3.4 Cathodic corrosion 375
5.9.3.5 Galvanic corrosion 376
5.9.3.6 Fretting corrosion 381
5.9.3.7 Corrosion caused by magnetic fields and induced currents 381
5.9.4 References 382
? XIV
5.10 Corrosion in cars 383
5.10.1 Protective coatings 390
5.10.2 Hot melt wax coatings 390
5.11 Corrosion caused by bird droppings 392
5.12 Corrosion in medical implants and ni dermatitis 397
5.12.1 Nickel allergy or nickel dermatitis 401
5.12.2 Test of metal ion release 403
CHAPTER 6: DETERMINING CORROSION RATES 407
6.1 Introduction 407
6.2 The weight gain method 411
6.3 Polarization techniques using potentiostats 414
6.3.1 Cyclic polarization scans 421
6.3.2 Estimation of corrosion rates by Tafel lines 424
6.4 The Linear Polarization Resistance (LPR) method 425
6.5 The Electrical resistance (ER) method 427
6.6 The Quartz Crystal Microbalance (QCM) method 431
6.7 The Electrochemical Impedance Spectroscopy
(EIS) method 435
6.7.1 Introduction to EIS 435
6.7.2 Modelling of simple capacitive surfaces 437
6.7.3 Analysis of EIS data 440
6.7.4 Constant phase element 443
6.7.5 EIS analysis of a coating 444
6.7.6 Unstable systems 447
6.7.7 Systems under diffusional control 448
6.7.8 Data analysis 449
6.7.9 Further reading 450
6.8 Selected methods for detecting porosities in coatings 451
6.9 Test methods for evaluating coating durability 456
6.9.1 Evaluating corrosion and durability 457
6.9.2 Field testing - weathering 458
6.9.3 Accelerated test methods 466
6.9.4 Chamber tests 472
6.9.4.1 Light exposure tests 472
6.9.4.2 Salt spray tests 474
6.9.4.3 Kesternich test 478
6.9.4.4 Humidity test 479
XV ?
CHAPTER 7: OPTIMAL MATERIAL AND SURFACE
SELECTION FOR CORROSION PROTECTION 485
7.1 Corrosion protection strategies 485
7.2 Cathodic and anodic protection 488
7.2.1 Introduction 488
7.2.2 Cathodic protection 490
7.2.3 Impressed current 491
7.2.4 Anodic protection 495
7.2.5 Ennoblement of zinc 500
7.3 Corrosion inhibitors 504
7.3.1 Classification of corrosion inhibitors 504
7.3.2 Environmental conditioners (scavengers) 505
7.3.3 Liquid phase inhibitors 510
7.3.4 Vapour Phase Inhibitors (VPI’s) 520
7.3.5 Green corrosion inhibitors 522
7.4 Material selection 524
7.5 CORTEN steel and cast iron 527
7.5.1 CORTEN® steel or weathering steel 528
7.5.2 Cast Iron 530
7.6 Stainless steel and free maching steels 533
7.6.1 The early history of stainless steel 533
7.6.2 Stainless steel alloy elements, microstructure
and nomenclature 537
7.6.3 Alloying elements and their function 543
7.6.4 The different stainless steel categories 550
7.6.4.1 Austenitic steels 550
7.6.4.2 Austenitic chrome manganese steels 551
7.6.4.3 Ferritic steels 554
7.6.4.4 Ferritic-Austenitic (duplex) steels 554
7.6.4.5 Martensitic and martensitic-austenitic steels 556
7.6.5 Common corrosion types in stainless steel 564
7.6.6 General corrosion or uniform corrosion 565
7.6.7 Pitting and crevice corrosion 566
7.6.8 Stress corrosion cracking 569
7.6.9 Intergranular corrosion 570
7.6.10 Galvanic corrosion 572
7.7 Nickel and nickel alloys 573
7.8 Titanium and titanium alloys 580
7.8.1 Classification of alloys 583
7.8.2 Corrosion of titanium alloys 589
7.8.3 Effect of alloying elements 592
7.8.4 Stress corrosion cracking of titanium alloys 592
7.8.5 Effect of alloy microstructure on stress corrosion cracking 593
7.9 Copper and copper alloys 595
7.9.1 Copper-zinc alloys (brasses) 602
7.9.2 Silicon brasses 604
7.9.3 Tin bronzes 607
7.9.4 Tin brass 608
7.9.5 Nickel-tin bronzes 609
7.9.6 Aluminum bronzes 609
? XVI
7.9.7 Manganese bronzes 612
7.9.8 Copper beryllium alloys 613
7.9.9 Copper-nickel 614
7.9.10 Nickel silvers 615
7.10 Zinc and diecasted zinc 616
7.10.1 Surface treatment of zinc 624
7.11 Aluminum and aluminum alloys 626
7.11.1 Aluminum 626
7.11.2 Aluminum alloys 626
7.11.3 Alloys suitable for casting 628
7.11.4 Wrought alloys 629
7.11.4.1 Typical microstructure of aluminum alloys 630
7.11.5 Aluminum recycling 632
7.11.6 Corrosion of aluminum and aluminum alloys 633
7.11.6.1 Corrosion of pure aluminum 633
7.11.6.2 Corrosion of aluminum alloys 635
7.11.6.2.1 Grain boundary precipitation and effects on corrosion 635
7.11.6.2.2 Role of the chemical composition of intermetallic
particles in corrosion 636
7.11.6.2.3 Selection of the alloy 639
7.11.7 The effect of the environment on corrosion
of aluminum and its alloys 640
7.11.7.1 Oxygen content 640
7.11.7.2 The impact of ph on the corrosion of aluminum 641
7.11.7.3 The impact of temperature on the corrosion of aluminum 641
7.12 Magnesium alloys 642
7.12.1 Alloy labelling and tempering 645
7.12.2 Cast alloys 646
7.12.3 Wrought alloys 647
7.12.4 Corrosion of Magnesium alloys 647
7.12.5 Galvanic corrosion 648
7.12.6 Influence of microstructure on corrosion
of magnesium alloys 649
7.13 Precious metals 652
7.13.1 Gold 653
7.13.2 Silver 657
7.13.3 Rhenium 663
7.13.4 The platinum group metals (PGMs) 664
7.13.4.1 Platinum 665
7.13.4.2 Palladium 667
7.13.4.3 Rhodium 672
7.13.4.4 Iridium 674
7.13.4.5 Ruthenium 677
7.13.4.6 Osmium 678
7.13.4.7 Ellingham diagrams for noble metal oxides 679
7.14 Cermets (hardmetals) 681
7.15 Corrosion of polymers 685
7.15.1 Physical aging 686
7.15.2 Thermal aging 688
7.15.3 Thermo oxidation 692
7.15.4 Chemical aging 693
7.15.5 Aging by chlorine 695
Andre har også købt
Bestil nu og få den leveret inden for 2-3 hverdage.
Bestil nu og få den leveret inden for 2-3 hverdage.
Bestil nu og få den leveret inden for 2-3 hverdage.
Advanced Surface Technology, Volume 1+2
A holistic view on the extensive and intertwined world of applied surface engineering
Per Møller og Lars Pleth Nielsen
Møller & Nielsen
(2013)
1.250,00 kr.
1.125,00 kr.
Bestil nu og få den leveret inden for 2-3 hverdage.