SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit

Natural Language Processing with Python, 1. udgave
Søgbar e-bog

Natural Language Processing with Python Vital Source e-bog

Steven Bird, Ewan Klein og Edward Loper
(2009)
O'Reilly Media, Inc
337,00 kr.
Leveres umiddelbart efter køb
Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit

Natural Language Processing with Python

Analyzing Text with the Natural Language Toolkit
Steven Bird, Ewan Klein og Edward Loper
(2009)
Sprog: Engelsk
O'Reilly Media, Incorporated
524,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • 1. Udgave
  • Vital Source searchable e-book (Reflowable pages): 504 sider
  • Udgiver: O'Reilly Media, Inc (Juni 2009)
  • Forfattere: Steven Bird, Ewan Klein og Edward Loper
  • ISBN: 9780596555719
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Licens varighed:
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.

Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: -1 sider kan printes ad gangen
Copy: højest -1 sider i alt kan kopieres (copy/paste)

Detaljer om varen

  • Paperback: 502 sider
  • Udgiver: O'Reilly Media, Incorporated (August 2009)
  • Forfattere: Steven Bird, Ewan Klein og Edward Loper
  • ISBN: 9780596516499

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.

Packed with examples and exercises, Natural Language Processing with Python will help you:

  • Extract information from unstructured text, either to guess the topic or identify "named entities"
  • Analyze linguistic structure in text, including parsing and semantic analysis
  • Access popular linguistic databases, including WordNet and treebanks
  • Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence


This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Preface; Audience; Emphasis; What You Will Learn; Organization; Why Python?; Software Requirements; Natural Language Toolkit (NLTK); For Instructors; Conventions Used in This Book; Using Code Examples; Safari® Books Online; How to Contact Us; Acknowledgments; Royalties;
Chapter 1: Language Processing and Python;
1.1 Computing with Language: Texts and Words;
1.2 A Closer Look at Python: Texts as Lists of Words;
1.3 Computing with Language: Simple Statistics;
1.4 Back to Python: Making Decisions and Taking Control;
1.5 Automatic Natural Language Understanding;
1.6 Summary;
1.7 Further Reading;
1.8 Exercises;
Chapter 2: Accessing Text Corpora and Lexical Resources;
2.1 Accessing Text Corpora;
2.2 Conditional Frequency Distributions;
2.3 More Python: Reusing Code;
2.4 Lexical Resources;
2.5 WordNet;
2.6 Summary;
2.7 Further Reading;
2.8 Exercises;
Chapter 3: Processing Raw Text;
3.1 Accessing Text from the Web and from Disk;
3.2 Strings: Text Processing at the Lowest Level;
3.3 Text Processing with Unicode;
3.4 Regular Expressions for Detecting Word Patterns;
3.5 Useful Applications of Regular Expressions;
3.6 Normalizing Text;
3.7 Regular Expressions for Tokenizing Text;
3.8 Segmentation;
3.9 Formatting: From Lists to Strings;
3.10 Summary;
3.11 Further Reading;
3.12 Exercises;
Chapter 4: Writing Structured Programs;
4.1 Back to the Basics;
4.2 Sequences;
4.3 Questions of Style;
4.4 Functions: The Foundation of Structured Programming;
4.5 Doing More with Functions;
4.6 Program Development;
4.7 Algorithm Design;
4.8 A Sample of Python Libraries;
4.9 Summary;
4.10 Further Reading;
4.11 Exercises;
Chapter 5: Categorizing and Tagging Words;
5.1 Using a Tagger;
5.2 Tagged Corpora;
5.3 Mapping Words to Properties Using Python Dictionaries;
5.4 Automatic Tagging;
5.5 N-Gram Tagging;
5.6 Transformation-Based Tagging;
5.7 How to Determine the Category of a Word;
5.8 Summary;
5.9 Further Reading;
5.10 Exercises;
Chapter 6: Learning to Classify Text;
6.1 Supervised Classification;
6.2 Further Examples of Supervised Classification;
6.3 Evaluation;
6.4 Decision Trees;
6.5 Naive Bayes Classifiers;
6.6 Maximum Entropy Classifiers;
6.7 Modeling Linguistic Patterns;
6.8 Summary;
6.9 Further Reading;
6.10 Exercises;
Chapter 7: Extracting Information from Text;
7.1 Information Extraction;
7.2 Chunking;
7.3 Developing and Evaluating Chunkers;
7.4 Recursion in Linguistic Structure;
7.5 Named Entity Recognition;
7.6 Relation Extraction;
7.7 Summary;
7.8 Further Reading;
7.9 Exercises;
Chapter 8: Analyzing Sentence Structure;
8.1 Some Grammatical Dilemmas;
8.2 What's the Use of Syntax?;
8.3 Context-Free Grammar;
8.4 Parsing with Context-Free Grammar;
8.5 Dependencies and Dependency Grammar;
8.6 Grammar Development;
8.7 Summary;
8.8 Further Reading;
8.9 Exercises;
Chapter 9: Building Feature-Based Grammars;
9.1 Grammatical Features;
9.2 Processing Feature Structures;
9.3 Extending a Feature-Based Grammar;
9.4 Summary;
9.5 Further Reading;
9.6 Exercises;
Chapter 10: Analyzing the Meaning of Sentences;
10.1 Natural Language Understanding;
10.2 Propositional Logic;
10.3 First-Order Logic;
10.4 The Semantics of English Sentences;
10.5 Discourse Semantics;
10.6 Summary;
10.7 Further Reading;
10.8 Exercises;
Chapter 11: Managing Linguistic Data;
11.1 Corpus Structure: A Case Study;
11.2 The Life Cycle of a Corpus;
11.3 Acquiring Data;
11.4 Working with XML;
11.5 Working with Toolbox Data;
11.6 Describing Language Resources Using OLAC Metadata;
11.7 Summary;
11.8 Further Reading;
11.9 Exercises;Afterword: The Language Challenge; Language Processing Versus Symbol Processing; Contemporary Philosophical Divides; NLTK Roadmap; Envoi...;Bibliography;NLTK Index;General Index;Colophon;
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.