SØG - mellem flere end 8 millioner bøger:
Viser: Elegant SciPy - The Art of Scientific Python
Elegant SciPy Vital Source e-bog
Juan Nunez-Iglesias, Stéfan van der Walt og Harriet Dashnow
(2017)
Elegant SciPy
The Art of Scientific Python
Juan Nunez-Iglesias, Stéfan van der Walt og Harriet Dashnow
(2017)
Sprog: Engelsk
om ca. 15 hverdage
Detaljer om varen
- 1. Udgave
- Vital Source searchable e-book (Reflowable pages)
- Udgiver: O'Reilly Media, Inc (August 2017)
- Forfattere: Juan Nunez-Iglesias, Stéfan van der Walt og Harriet Dashnow
- ISBN: 9781491922941
Bookshelf online: 5 år fra købsdato.
Bookshelf appen: ubegrænset dage fra købsdato.
Udgiveren oplyser at følgende begrænsninger er gældende for dette produkt:
Print: 2 sider kan printes ad gangen
Copy: højest 2 sider i alt kan kopieres (copy/paste)
Detaljer om varen
- Paperback: 268 sider
- Udgiver: O'Reilly Media, Incorporated (August 2017)
- Forfattere: Juan Nunez-Iglesias, Stéfan van der Walt og Harriet Dashnow
- ISBN: 9781491922873
Welcome to Scientific Python and its community. If you're a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You'll learn how to write elegant code that's clear, concise, and efficient at executing the task at hand.
Throughout the book, you'll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you'll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries.
- Explore the NumPy array, the data structure that underlies numerical scientific computation
- Use quantile normalization to ensure that measurements fit a specific distribution
- Represent separate regions in an image with a Region Adjacency Graph
- Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform
- Solve sparse matrix problems, including image segmentations, with SciPy's sparse module
- Perform linear algebra by using SciPy packages
- Explore image alignment (registration) with SciPy's optimize module
- Process large datasets with Python data streaming primitives and the Toolz library