SØG - mellem flere end 8 millioner bøger:

Søg på: Titel, forfatter, forlag - gerne i kombination.
Eller blot på isbn, hvis du kender dette.

Viser: Engineering Physics of High-Temperature Materials - Metals, Ice, Rocks, and Ceramics

Engineering Physics of High-Temperature Materials - Metals, Ice, Rocks, and Ceramics

Engineering Physics of High-Temperature Materials

Metals, Ice, Rocks, and Ceramics
Nirmal K. Sinha og Shoma Sinha
(2022)
Sprog: Engelsk
John Wiley & Sons, Limited
2.244,00 kr.
ikke på lager, Bestil nu og få den leveret
om ca. 10 hverdage

Detaljer om varen

  • Hardback: 432 sider
  • Udgiver: John Wiley & Sons, Limited (Marts 2022)
  • Forfattere: Nirmal K. Sinha og Shoma Sinha
  • ISBN: 9781119420484

Engineering Physics of High Temperature Materials: Metals, Ice, Rocks and Ceramics addresses an issue that is universally acknowledged and documented - that is, what causes a material to deform and fail at high temperatures and, more importantly, what are the mechanisms involved in the deformation processes leading to failure. This applies to ice, glass, ceramics, rocks and complex high-temperature alloys, including single crystals, used in gas-turbine engines.

Volume highlights include:

- Experimental and theoretical studies on temperature-microstructure dependent delayed-elasticity (used to be called 'anelasticity') at high homologous temperature that has ready applications to the analysis of lithosphere-asthenosphere boundary (LAB) temperature regime inferred from seismic velocities
- Establishes the facts that engineering physics of polycrystalline ice and ice sheets, floating on their own melt, hence at extremely high homologous temperatures, are analogous to Earth's Asthenosphere and complex engineering materials like metallic alloys and ceramics used at high temperatures > 0.4Tm, where Tm is the melting point
- Presents and emphasizes the fundamental grain-scale and lattice-scale (dislocations slip, climb and pileups) microstructural and micromechanical similarities of apparently different materials, such as metals, metallic alloys, ice, rocks and ceramics
- Development of novel experimental technique, 'Strain Relaxation and Recovery Test (SRRT)' for characterization of the pivotal, yet neglected, role of delayed elasticity in shaping the primary creep, and nucleation and multiplication of grain-boundary cracks during this period
- Development of 'Elasto-Delayed Elastic-Viscous (EDEV) equation that offers unified mathematical and physical descriptions of the (a) shapes of 'constant-stress creep curve' (primary, transitional minimum creep rate and tertiary), (b) 'constant strain-rate stress-strain curve' and (c) 'constant-strain stress relaxation'

Engineering Physics of High Temperature Materials is a valuable resource for students and researchers in the field of crystallography, mineralogy, petrology, structural geology, metamorphic geology, geophysics, glaciology, tectonics, engineering, mechanics, thermodynamics, high-temperature deformation, physics, metallurgy, ceramics, alloys, and material sciences.



Acknowledgments xiii Engineering Physics of High-Temperature Materials xv 1 Importance of a Unified Model of High-Temperature Material Behavior 1
1.1 The World''s Kitchens - The Innovation Centers for Materials Development 1
1.1.1 Defining High Temperature Based on Cracking Characteristics 4
1.2 Trinities of Earth''s Structure and Cryosphere 7
1.2.1 Trinity of Earth''s Structure 7
1.2.2 Trinity of Earth''s Cryospheric Regions 7
1.3 Earth''s Natural Materials (Rocks and Ice) 8
1.3.1 Ice: A High-Temperature Material 9
1.3.2 Ice: An Analog to Understand High-Temperature Properties of Solids 10
1.4 Rationalization of Temperature: Low and High 12
1.5 Deglaciation and Earth''s Response 12
1.6 High-Temperature Deformation: Time Dependency 13
1.6.1 Issues with Terminology: Elastic, Plastic, and Viscous Deformation 13
1.6.2 Elastic, Delayed Elastic, and Viscous Deformation 13
1.7 Strength of Materials 16
1.8 Paradigm Shifts 18
1.8.1 Paradigm Shift in Experimental Approach 18
1.8.2 Breaking Tradition for Creep Testing 19
1.8.3 Exemplification the Novel Approach 19
1.8.4 Romanticism for a Constant-Structure Creep Test 23 References 25 2 Nature of Crystalline Substances for Engineering Applications 29
2.1 Basic Materials Classification 30
2.2 Solid-state Materials 31
2.2.1 Structure of Crystalline Solids 31
2.2.2 Structure of Amorphous Solids 33
2.3 General Physical Principles 34
2.3.1 Solidification of Materials 34
2.3.2 Phase Diagrams 35
2.3.3 Crystal Imperfections 37
2.4 Glass and Glassy Phase 40
2.4.1 Glass Transition 40
2.4.2 Structure of Real Glass 41
2.4.3 Composition of Standard Glass 41
2.4.4 Thermal Tempering 42
2.4.5 Material Characteristics 43
2.5 Rocks: The Most Abundant Natural Polycrystalline Material 44
2.5.1 Sedimentary Rocks 44
2.5.2 Metamorphic Rocks 45
2.5.3 Igneous Rocks 45
2.6 Ice: The Second Most Abundant Natural Polycrystalline Material 45
2.7 Ceramics 47
2.8 Metals and Alloys 48
2.8.1 Iron-base Alloys 48
2.8.2 Nickel-base Alloys 50
2.8.3 Titanium-base Alloys 53
2.8.4 Mechanical Metallurgy 54
2.9 Classification of Solids Based on Mechanical Response at High Temperatures 55 References 56 3 Forensic Physical Materialogy 59
3.1 Introduction 59
3.1.1 Material Characterization 60
3.2 Polycrystalline Solids and Crystal Defects 61
3.2.1 Etch-Pitting Technique - A Powerful Tool 63
3.3 Structure and Texture of Natural Hexagonal Ice, I h 67
3.4 Section Preparation for Microstructural Analysis 69
3.4.1 Thin Sectioning of Ice 69
3.4.2 Large 300mm Diameter Polariscope 69
3.4.3 Sectioning for Forensic Analysis of Compression Failure 70
3.5 Etching of Prepared Section Surfaces 71
3.5.1 Surface Etching 72
3.6 Sublimation Etch Pits in Ice, I h 72
3.7 Etch-Pitting Technique for Dislocations 75
3.7.1 Simultaneous Etching and Replicating 76
3.7.2 Etching Processes and Their Applications 77
3.8 Chemical Etching and Replicating of Ice Surfaces 79
3.9 Displaying Dislocation Climb by Etching 81
3.10 Thermal Etching: An Unexploited Materialogy Tool 82 References 88 4 Test Techniques and Test Systems 91
4.1 On the Strength of Materials and Test Techniques 91
4.1.1 Issues with Stress-Strain ( Ï? - ε ) Diagrams at High Temperatures 93
4.1.2 Fundamentals of Displacement Rate, Strain Rate, and Stress Rate Tests 95
4.1.3 Time - An Important Parameter at High Temperatures 96
4.2 Static Modulus and Dynamic Elastic Modulus 97
4.3 Thermal Expansion Over a Wide Range of Temperature 97
4.4 Creep and Fracture Strength 98
4.5 Bending Tests 99
4.5.1 Three-Point Bending 99
4.5.2 Four-Point Bending 99
4.5.3 Cantilever Beam Bending 102
4.6 Compression Tests - Uniaxial, Biaxial, and Triaxial 103
4.6.1 Uniaxial Compression Tests 103
4.6.2 Biaxial or Confined Compression Tests 103
4.6.3 Triaxial or Multiaxial Compression and Tension Tests 103
4.7 Tensile and/or Compression Test System 104
4.7.1 Tests with Single Top-Lever Loading Frame 104
4.7.2 Universal Testing Machine and Systems: Introduction to SRRT Methodology 105
4.8 Stress Relaxation Tests (SRTs) 107
4.8.1 Necessity for Stress Relaxation Properties 108
4.8.2 Basic Principle of SRTs 109
4.9 Cyclic Fatigue 110
4.9.1 Low-Cycle Fatigue (LCF) and High-Cycle Fatigue (HCF Tests) 110
4.9.2 Uncharted Characteristics of Delayed Elasticity in Cyclic Loading 112
4.9.3 Cyclic Loading of Snow and Thermal Cycling on Asphalt Concrete 113
4.10 Acoustic Emission (AE) and/or Microseismic Activity (MA) 114
4.11 Tempering of Structural and Automotive Glasses 116
4.12 Specimen Size and Geometry: Depending on Material Grain Structure 119
4.13 In Situ Borehole Tests: Inspirations from Rock Mechanics 119 References 123 5 Creep Fundamentals 129
5.1 Overview 130
5.2 On Rheology and Rheological Terminology 132
5.3 Forms of Creep and Deformation Maps 132
5.3.1 Generalization for Polycrystalline Materials 132
5.3.2 Nabarro-Herring Creep 133
5.3.3 Coble Creep 133
5.3.4 Harper-Dorn Creep 133
5.3.5 Ashby-Verrall Creep 133
5.3.6 Deformation Mechanism Maps 134
5.4 Grain-Boundary Shearing or Sliding 134
5.5 Creep Curves - Classical Primary, Secondary, and Tertiary Descriptions 135
5.5.1 Elasticity and Annealing of Glass 136
5.5.2 Phenomenological Rheology of Glass 137
5.5.3 Normalized Creep - Another Presentation of Rheology of Glass 140
5.6 Phenomenology of Primary Creep in Metals, Ceramics, and Rocks 144
5.7 Primary Creep in Ice: Launching SRRT Technique and EDEV Model 148
5.8 Grain-Boundary Shearing (gbs) and Grain-Size Dependent Delayed Elasticity 151
5.9 Generalization of EDEV Model: Introduction of Grain-Size Effect 153
5.10 Logarithmic Primary Creep: An Alternative Form of the EDEV Model 157
5.11 Shifting Paradigms: Emphasizing Primary Creep of Polycrystalline Materials 158
5.12 SRRT for Primary Creep and EDEV Model of a Titanium-Base Superalloy (Ti-6246) 158
5.13 SRRT for Primary Creep and EDEV Model for a Nickel-Base Superalloy (Waspaloy) 162
5.14 SRRT for Primary Creep of a Nickel-Rich Iron-Base Alloy (Discaloy) 169
5.15 SRRTs for Primary Creep and EDEV Model of a Nickel-Base Superalloy (IN-738LC) 170
5.16 EDEV-Based Strain-Rate Sensitivity of High-Temperature Yield Strength 175
5.16.1 Constant Strain-Rate Yield 176
5.16.2 Yield Strength of Ti-6246 at 873 K (0.45 T m) 178
5.16.3 Yield Strength of Waspaloy at 1005 K (0.62 T m) 178
5.17 Single-Crystal (SX) Superalloy Delayed Elasticity and γ / γ Interface Shearing 185
5.18 Creep, Steady-State Tertiary Stage, and Elasto-Viscous (EV) Model for Single Crystals 191
5.19 Creep Fracture and EV Model for CMSX-10 SXs 194
5.20 Fracture and Inhomogeneous Deformation 198
5.21 Dynamic Steady-State Tertiary Creep of Several Nickel-Base SXs 200
5.21.1 MAR-M-247 Single Crystal 200
5.21.2 CMSX-3 Single Crystal 201
5.21.3 CMSX-4 Single Crystal with Rhenium 202
5.21.4 CMSX-4 Single Crystal 202
5.21.5 TMS-75 Single Crystal 203
5.21.6 SRR99 Single Crystal 205 References 205 6 Phenomenological Creep Failure Models 215
6.1 Creep and Creep Failure 215
6.2 Steady-State Creep 216
6.3 Commonly Used Creep Experiments and Strength Tests 217
6.3.1 Constant Stress and Constant Deformation (CD) Rate Tests 217
6.3.2 A Short Glimpse of Creep Tests 220
6.3.3 Power Law for Creep 220
6.3.4 Larsen and Miller Concept 223
6.3.5 Monkman and Grant (M-G) Relationship 223
6.3.6 Rabotnov-Kachanov Concept for Creep Fracture 224
6.3.7 Breaking Tradition - θ -Projection Concept 224
6.4 Modeling Very Long-Term Creep Rupture from Short-Term Tests 225
6.4.1 Traditional Approaches for Power-Generation Operations 225
6.4.2 Captivating and Entrenched Focus on Minimum Creep Rate 226
6.5 High-Temperature Low-Cycle Fatigue (HT-LCF) and Dwell Fatigue 226
6.6 Crucial Tests on Rate Sensitivity of High-Temperature Strength 227
6.7 Rational Approach Inspired by the Principle of "Hindsight 20/20" 232 References 233 7 High-Temperature Grain-Boundary Embrittlement and Creep 237
7.1 Fracture and Material Failure 237
7.1.1 Griffith''s Model for Crack Propagation 239
7.1.2 Crack Nucleation Mechanisms at Low Homologous Temperatures 240
7.1.3 Acoustic Emissions and Cracks 241
7.1.4 A Novel Treatment of AE and Cracks in Ice Engineering 242
7.2 Grain Size Effects on Strength 245
7.2.1 Popular Low-Temperature Concept of Strength 245
7.2.2 Problems with Estimating Grain Size 245
7.2.3 Inapplicability of the Hall-Petch Relation at High Temperatures 246
7.3 Grain-Boundary Shearing (gbs) Induced Crack Initiation 246
7.3.1 Groundwork for a High-Temperature Crack-Initiation Hypothesis 248
7.3.2 Gold''s Classic Studies on Creep Cracking by Visual Observations 249
7.3.3 Forensic Microstructural Examinations of First Creep Cracks 251
7.3.4 First Grain-Facet-S
De oplyste priser er inkl. moms

Polyteknisk Boghandel

har gennem mere end 50 år været studieboghandlen på DTU og en af Danmarks førende specialister i faglitteratur.

 

Vi lagerfører et bredt udvalg af bøger, ikke bare inden for videnskab og teknik, men også f.eks. ledelse, IT og meget andet.

Læs mere her


Trykt eller digital bog?

Ud over trykte bøger tilbyder vi tre forskellige typer af digitale bøger:

 

Vital Source Bookshelf: En velfungerende ebogsplatform, hvor bogen downloades til din computer og/eller mobile enhed.

 

Du skal bruge den gratis Bookshelf software til at læse læse bøgerne - der er indbygget gode værktøjer til f.eks. søgning, overstregning, notetagning mv. I langt de fleste tilfælde vil du samtidig have en sideløbende 1825 dages online adgang. Læs mere om Vital Source bøger

 

Levering: I forbindelse med købet opretter du et login. Når du har installeret Bookshelf softwaren, logger du blot ind og din bog downloades automatisk.

 

 

Adobe ebog: Dette er Adobe DRM ebøger som downloades til din lokale computer eller mobil enhed.

 

For at læse bøgerne kræves særlig software, som understøtter denne type. Softwaren er gratis, men du bør sikre at du har rettigheder til installere software på den maskine du påtænker at anvende den på. Læs mere om Adobe DRM bøger

 

Levering: Et download link sendes pr email umiddelbart efter købet.

 


Ibog: Dette er en online bog som kan læses på udgiverens website. 

Der kræves ikke særlig software, bogen læses i en almindelig browser.

 

Levering: Vores medarbejder sender dig en adgangsnøgle pr email.

 

Vi gør opmærksom på at der ikke er retur/fortrydelsesret på digitale varer.